期刊文献+

人尿胰蛋白酶抑制剂与1-苯胺基-8-萘磺酸的相互作用研究

Interaction between Urinary Trypsin Inhibitor and 1-Anilino-8-Naphthalisene Sulfonate
原文传递
导出
摘要 用荧光光谱、等温滴定微量热(ITC)及分子模建3种方法研究了人尿胰蛋白酶抑制剂(UTI)与1-苯胺基-8-萘磺酸(ANS)的相互作用.结果表明:在UTI上有4个以静电相互作用为主要作用力的特异性的ANS结合位点,分别命名为位点Ⅰ,Ⅱ,Ⅲ和Ⅳ;其中位点Ⅰ位于UTI上结构域Ⅱ的第98位色氨酸(Trp98)附近,位点Ⅱ位于结构域Ⅰ和结构域Ⅱ的相互作用区,位点Ⅲ与位点Ⅳ位于结构域Ⅰ;这4个特异性结合位点所处的区域疏水性较强.ITC实验测得另外5个非特异性结合位点,其主要相互作用力是以ANS的磺酸基与UTI分子表面的带正电的基团间形成的盐键,表明在中性缓冲液中,有5个带正电的氨基酸残基暴露在UTI分子表面. The interaction between Urinary Trypsin Inhibitor (UTI) and 1-anilino-8-naphthalisene Sulfonate (ANS) was investigated by fluorescence spectrum, Isothermal Titration Calorimetry (ITC) and molecular model. The results of the three experiments identically revealed the presence of four specific binding sites on UTI for ANS, and the interaction between UTI and ANS in the four specific binding sites were driven mainly by electrostatic interaction. The four binding sites were named as site Ⅰ , Ⅱ , Ⅲ and Ⅳ respectively. Site Ⅰ was located in domain Ⅱ and near to Trp98; site Ⅱ were located in the interaction region of the two domains site Ⅲ and site IV were located in domain Ⅰ The results indicated there were four hydrophobic patches in UTI. But the data of ITC experiments showed the pres- ence of other five nonspeeific binding sites. The interaction between UTI and ANS in the five nonspecific binding sites were driven mainly by the formation of salt band between the sulfonates of ANS and positive residues on the surface of UTI, which indicated there were five positive residues in the surface of UTI molecular in the neutral buffer.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期341-346,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(31160240) 江西省科技计划项目(2011BDH80035 2010BNA08000)
  • 相关文献

参考文献17

  • 1XU Y,Carr P D,Guss J M,et al. The crystal structure of bikunin from the inter-alpha-inhibitor complex: A serine protease inhibitor with two Kunitz domains[J]. J Mol Biol, 1998 ,276(5): 955-66.
  • 2Kobayashi H. Endogenous anti-inflammatory substances, inter-alpha-inhibitor and bikunin [J]. Biol Chem , 2006 ,387(2) : 1545-1549.
  • 3Foekens J A,Peters H A,Look M P,etal. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients [J]. Cancer Res, 2000,60 (3) : 636-643.
  • 4Kobayashi H, Fujie M, Shinohara H,etal. T Effects of urinary trypsin inhibitor on the invasion of reconstituted basement membranes by ovarian cancer cells[J]. Int J Cancer, 1994 ,57(3): 378-384.
  • 5Kobayashi H, Suzuki M, Sun G W .et al. Suppression of urokinase-type plasminogen activator expression from human ovarian cancer cells by urinary trypsin inhibitor[J]. Biochim Biophys Acta, 2000, 1481 (2) : 310-316.
  • 6Kobayashi H, Yoshida R, Kanada Y, et al. A soybean Kunitz trypsin inhibitor reduces tumor necrosis factor-alpha production in ultraviolet-exposed primary human keratinocytes[J]. Exp Dermatol ,2005,14(10): 765-774.
  • 7Roychaudhuri R, Sarath G, Zeece M,et al. Reversible denaturation of the soybean Kunitz trypsin inhibitor [J]. Arch Biochem Biophys , 2003 ,4120) : 20-26.
  • 8Matulis Dv Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation[J]. Biophys J ,1998,740) : 422-429.
  • 9Fan H, Liu J, Ren W,etal. pH induces thermal unfolding of UTI: An implication of reversible and irreversible mechanism based on the analysis of thermal stability, thermodynamic, conformational characterization[J]. J Fluoresc,2008,18(2) :305-317.
  • 10范汉东,杨扬,晏润纬,杨一兵,郭建军,邹国林.Lys121-Ile的定点突变对人尿胰蛋白酶抑制剂热稳定性的影响[J].武汉大学学报(理学版),2010,56(1):75-80. 被引量:1

二级参考文献44

  • 1Santra M K,Banerjee A,Rabaman O,et al. Unfolding pathways of human serum albumin: evidence for se quential unfolding and folding of its three domains[J]. Int J Biol Macromol , 2005,37 : 200-204.
  • 2Fan H, Liu J, Ren W, etal. pH induces thermal un folding of UTI: An implication of reversible and irreversible mechanism based on the analysis of thermal stability, thermodynamic, conformational characterization[J]. J Fluoresc,2008,18:305-317.
  • 3Sambrook J, Russel D W. Molecular Cloning: A Laboratory Manual [M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press,2001.
  • 4Xu Y, Carr P D, Guss J M, et al. The crystal structure of bikunin from the inter-alpha-inhibitor complex:A serine protease inhibitor with two Kunitz domains [J]. J Mol Biol,1998,276:955-966.
  • 5Herve M G, Ghelis C. Conformational changes in intact and papain modified alpha 1-proteinase inhibitor induced by guanidinium chloridepJ]. Eur J Biochem, 1990,19:1653-1658.
  • 6Qasim M A, Lu S M, Ding J,et al. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases[J]. Biochemistry, 1999,38: 7142-7150.
  • 7Potempa J, Kwon K, Chawla R, et al. Inter-alphatrypsin inhibitor. Inhibition spectrum of native and derived forms[J]. J Biol Chem,1989,264:15109-15114.
  • 8Chang Juiyoa, Li Li. Divergent folding pathways of two homologous proteins, BPT1 and tick anticoagulant peptide: Compartmentalization of folding intermediates and identiWcation of kinetic traps [J]. Archives of Biochemistry and Biophysics, 2005,437 : 85-95.
  • 9Demetrius L. Thermodynamics and kinetics of protein folding:An evolutionary perspective[J]. J Theor Biol, 2002,217:397-411.
  • 10Kaya H , Chan H S. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: How applicable is the transition state picture to folding and unfolding? [J]. J Mol Biol, 2002,315:899-909.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部