期刊文献+

大范围运动柔性航天器的递推有限段法分析 被引量:3

Recursive Finite Segment Method Analysis of Flexible Spacecraft Undergoing Large Overall Motions
下载PDF
导出
摘要 采用有限段法对做大范围运动柔性航天器建模时,针对传统方法求解计算效率低的问题,提出将有限段法与空间算子代数理论结合的高效处理方法。首先采用有限段法对柔性部件进行离散,将系统构造成为带关节柔性的多刚体系统,然后采用空间算子代数理论建立递推动力学方程,保证了分段引入大量广义坐标的情况下计算量仅呈线性增长,很好地克服了分段后系统运算量急剧增长的问题。最后给出双柔性杆机械臂系统的仿真算例,分别采用空间算子代数算法(SOA)与牛顿欧拉法(NE)建模,数值仿真结果表明采用SOA法与NE法建模所得计算结果完全一致。对比两种方法计算时间表明,SOA法计算量与系统自由度呈线性关系,且远小于牛顿欧拉法,仿真结果证实了本文方法的可行性和有效性。 The number of freedom degree of flexible spacecraft undergoing large overall motions would increase largely if the finite segment method was adopted, so the traditional methods would be inefficient. A more efficient way was proposed by combining the finite segment method and the spatial operator algebra theory. Firstly, the flexible components were divided into several rigid bodies, so the original system turned to be a rigid multi-body with flexible joints. Then, the spatial operator algebra (SOA) theory based recursive kinetic equation of motion was established. Finally, a numerical example of two flexible link manipulators was presented. The simulation results are quite consistent when the problem was solved by the SOA method as well as the Newton Euler method. The computation time indicates that it increases linearly with the number of DOF by spatial operator algebra theory, and much fewer than that of the Newton Euler method. Results confirm the validation and efficiency of this method.
出处 《中国空间科学技术》 EI CSCD 北大核心 2012年第4期22-28,共7页 Chinese Space Science and Technology
基金 中央高校基本科研业务费专项资金(YWF-10-02-091)资助项目
关键词 空间算子代数 有限段法 动力学方程 柔性航天器 Spatial operator algebra Finite segment method Kinetic equation Flexible spacecraft
  • 相关文献

参考文献13

  • 1DOWNER J D, PARK K C, CHIOU J C. A computational procedure for multibody systems including flexible beam dynamics [R]. AIAA, CU CSSC-90-08, 1990: 443-458.
  • 2SHABANA A A. Finite element incremental approach and exact rigid body inertia [J]. ASME Journal of Mechanical Design, 1996, 118(2): 171-178.
  • 3SHABANA A A. Dynamics of Multibody Systems [M]. New York: John WileySons, 1989.
  • 4ROMERO I. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations [J]. Multibody Systems Dynamics, 2008.
  • 5HILEY R A, SHAW A J, ROY I M, et al. A flexible non-linear shell formulation using absolute nodal coordinates [C]. 49th AIAA SDM Conference, Sehaumburg, IL, 2008.
  • 6HUSTONRL,刘又午.多体系统动力学[M].天津:天津大学出版社,1991.
  • 7闫绍泽,刘冰清,刘又午,黄铁球.柔性多体系统动力学──有限段方法[J].河北工业大学学报,1997,26(3):1-9. 被引量:6
  • 8FEATHERSTONE R. The calculation of robot dynamics using articulated body inertias [J]. International Journal of Robotics Research, 1983, 2(1): 13-30.
  • 9RODRIGUEZG. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics [J]. IEEE, Journal of Robotics and Automation, 1987, 3(6): 623-639.
  • 10方喜峰,吴洪涛,刘云平,陆宇平,汪通悦.基于空间算子代数理论计算多体系统动力学建模[J].机械工程学报,2009,45(1):228-234. 被引量:24

二级参考文献9

  • 1GUILLERMO R, ABHINANDAN J. A spatial operator algebra for manipulator modeling and control[J], International Journal of Robotics Research, 1991, 11 (8): 371-381.
  • 2GUILLERMO R, ABHINANDAN J. Spatial operator algebra for multibody system dynamics[J]. The Journal of the Astronautical Sciences, 1992, 40(1): 27-50.
  • 3GUILLERMO R. Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics[J]. IEEE Journal of Robotics and Automation, 1987, 3(6): 624-639.
  • 4ABHINANDAN J, GUILLERMO R. Diagonalized Lagrangian robot dynamics[J]. IEEE Transactionons on Robotics and Automation, 1995, 11(4): 571-584.
  • 5阎绍泽,博士学位论文,1996年
  • 6Zhang Dajun,Chin J Mech Eng,1992年,1期,23页
  • 7刘又午,多体系统动力学.上,1987年
  • 8刘又午,多体系统动力学.下,1987年
  • 9吴洪涛,熊有伦.机械工程中的多体系统动力学问题[J].中国机械工程,2000,11(6):608-611. 被引量:21

共引文献29

同被引文献101

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部