期刊文献+

柠檬酸燃烧法制备Gd_3Ga_5O_(12):Eu^(3+)纳米晶及发光性质 被引量:2

Synthesis and Luminescence Properties of Gd_3Ga_5O_(12):Eu^(3+) Nanocrystals by Citric Acid Combustion Method
下载PDF
导出
摘要 以柠檬酸为燃烧剂,乙二醇为分散剂,采用燃烧法制备了Gd3Ga5O12∶Eu3+纳米晶。利用X射线衍射仪、扫描电镜和荧光光谱对样品的结构、形貌和发光性能进行了研究。XRD研究结果表明:合成的样品均为单一的Gd3Ga5O12晶相,纳米晶的一次性粒径分布在16~30 nm。发射光谱和激发光谱的研究表明:主发射峰来自于Eu3+的5D0→7F1的跃迁;宽激发带主要来自于Eu-O电荷迁移带。讨论了柠檬酸和乙二醇用量对晶粒尺寸、晶格常数、发射和激发强度的影响。结果表明:过量的柠檬酸和适量的乙二醇有利于晶体发育和发光强度的提高。 Gd3Ga5O12: Eu3+ nanocrystals were prepared by a combustion method, using citric acid (CA) as a fuel agent, glycol as dispersing agent. The structure, morphology and luminescence properties of the samples were studied by XRD, SEM and luminescence spectrum. The results of XRD indicated that Gd3Ga5O12: Eu3+nanocrystals with cubic phase could be obtained. The average erystallite size could be calculated as 16-30 nm by Scherrer equation. The results of emission spectra and excitation spectra show that the main emission peaks originated from 5D0→7F1 of Eu3+ ; the broad excitation bands is mainly assigned to charge transfer band of Eu-O. The effects of the quantities of citric acid and glycol on crystallite size, lattice constant, emission and excitation intensity were discussed. The results show that it is favorable for the crystal growth and improvement of luminescence intensity to excess of citric acid and appropriate glycol.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2012年第4期911-915,共5页 Journal of Synthetic Crystals
基金 辽宁省教育厅资助项目(L2011063)
关键词 燃烧法 Gd3Ga5O12∶Eu3+纳米晶 激发光谱 发射光谱 combustion method Gd3 Ga5 O12: Eu3+ nanocrystals excitation spectrum emission spectrum
  • 相关文献

参考文献6

二级参考文献69

  • 1汤根土,骆仲泱,余春江,倪明江,岑可法.溶胶-凝胶低温燃烧合成法制备Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9)纳米粉体[J].硅酸盐学报,2004,32(9):1121-1127. 被引量:6
  • 2刘春旭,张家骅,吕少哲,刘俊业.纳米Gd_2O_3:Eu^(3+)中Judd-Ofelt参数的实验确定[J].物理学报,2004,53(11):3945-3949. 被引量:15
  • 3孟庆裕,陈宝玖,赵晓霞,颜斌,王晓君,许武.Ag^+掺杂的立方相Y_2O_3:Eu纳米晶体粉末发光强度研究[J].物理学报,2006,55(5):2623-2627. 被引量:7
  • 4Yang J,Li R S,Zhou J Y,Li X C,Long Y L,Zhang Y M,Li Y W.Synthesis of LaMO3(M=Fe,Co,Ni) using nitrate or nitrite molten salts[J].J.Alloys Compd.,2010,508:301.
  • 5Zheng W J,Liu R H,Feng D K,Meng G Y.Hydrothermal synthesis of LaFeO3 under carbonate-containing medium[J].Mater Lett.,2000,43:19.
  • 6Soha S,Ghanawat S J,Purohit R D.Solution combustion synthesis of nano particle Lao.9 Sr0.1 MnO3 powder by a unique oxidant-fuel combination and its characterization[J].J.Mater.Sci.,2006,41:1939.
  • 7Qi X W,Zhou J,Yue Z X,Gui Z L,Li L.Auto-combustion synthesis of nanocrystalline LaFeO3[J].Mater.Chem.Phys.,2002,78:25.
  • 8Shen H,Cheng G,WuA H,Xu J Y,Zhao J T.Combustion synthesis and characterization of nano-crystalline LaFeO3 powder[J].Phys.Status Solidi A,2009,206(7):1420.
  • 9Kang D S,Lee T K,Hwang Y,Bae K H,Cho S B.Solution combustion synthesis of LaFeO3 powders and their carbon ignition property[J].Han'guk Chaelyo Hakhoechi,2007,17(7):382.
  • 10Jung C H,JalotaS,Bhaduri S B.Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere[J].Mater.Lett.,2005,59:2426.

共引文献33

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部