期刊文献+

计算机视觉——行人检测方法改进

Computer Vision--Improvement in Pedestrian Detection
下载PDF
导出
摘要 该文在阐述行人检测方法改进的主要思路、范围和方法的基础上,进一步对行人检测所使用的统计方法和特征进行了分析比较,提出了基于融合分类器的行人检测算法,并在检测前先进行前景标注,然后再在带标注的图像上进行行人检测。 This passage is about pedestrian detection and its improvement concerning its main idea, scope and method. The pedestrian de- tection based on statistical methods are analyzed and combined with the characteristics. The method of merged classifiers which can im- prove the detection rate on the condition that the performance will not decrease is used in this experiment. A marking foreground method is proposed that the foreground is extracted and marked, so that only the foreground pixels are detected instead of all of the image at the de- tection stage, which can improve the accuracy of detection, and make the detection speed more faster.
作者 杜文璐 DU Wen-lu (Colledge of Japanese & Software Engineering, Dalian Jiaotong University, Dalian 116052, China)
出处 《电脑知识与技术》 2012年第8期5341-5343,共3页 Computer Knowledge and Technology
关键词 计算机视觉 行人检测方法 改进 级联分类器 computer vision pedestrian detection improvement merged classifiers
  • 相关文献

参考文献3

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2Xu Fengliang,Fujimura K. Pedestrian detection and tracking with night vision. Proceeding of IEEE Intelligent Vehicles Symposium[M]. Versailles, France: IEEE Press, 2002: 21-30.
  • 3Munder S, Gavrila D M. An experimental study on pedestrian classification[J].IEEE Trans. Pattern Analysis and Machine Intelligencc, 2006,28 (11): 1863-1868.

二级参考文献42

  • 1Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection: the protector system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 13-18
  • 2Tons M, Doerfler R, Meinecke M M, Obojski M A. Radar sensors arid sensor platform used for pedestrian protection in the EC-funded project SAVE-U. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 813-818
  • 3Broggi A, Bertozzi M, Fascioli A, Sechi M. Shape-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium. Dearborn, USA. IEEE, 2000. 215-220
  • 4Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 1-6
  • 5Xu Feng-Liang, Liu Xia, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71
  • 6Zhao Liang, Thorpe C. Stereo and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3): 148-154
  • 7Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T.Pedestrian detection using wavelet templates. In: Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico. IEEE, 1997. 193-199
  • 8Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4):349-361
  • 9Cheng Hong, Zheng Nan-Ning, Qin Jun-Jie. Pedestrian detection using sparse Gabor filter and support vector machine. In: Proceedings of IEEE Intelligent Vehicles Sympo-sium. Vienna, Austria. IEEE, 2005. 583-587
  • 10Sun Hui, Hua Cheng-Ying, Luo Yu-Pin. A multi-stage classifter based algorithm of pedestrian detection in night with a near infrared camera in a moving car. In: Proceedings of 3rd IEEE International Conference on Image and Graphics.Hong Kong, China. IEEE, 2004. 120-123

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部