期刊文献+

基于全极化SAR数据反演鄱阳湖湿地植被生物量 被引量:10

Retrieval of Wetland Vegetation Biomass in Poyang Lake Based on Quad-polarization Image
下载PDF
导出
摘要 鄱阳湖是中国最大的淡水湖,也是国际重要湿地,对其生物量进行长期、定量研究有助于加深对区域乃至全球碳平衡的认识和理解。探讨了利用全极化Radarsat-2 C波段数据反演鄱阳湖湿地生物量的方法,改进了基于辐射传输理论的植被冠层散射模型,模拟了C波段湿地植被的后向散射特性;应用极化分解技术,增加了神经网络训练数据,并用后向反馈神经网络(BP)算法,反演了鄱阳湖湿地植被生物量。与野外实测生物量比较的结果表明:将改进的植被冠层散射模型和全极化分解得到的后向散射系数引入BP神经网络算法,能够有效降低生物量反演误差;全极化SAR数据在生物量反演中具有广阔的应用前景。 The Poyang Lake is the largest freshwater lake in China as well as an internationally important wetland. Long -term quantitative study of vegetation biomass in this area helps deepen our understanding of regional and global carbon balance. The authors investigated the approach and method of Radarsat - 2C - Band quad - polarization imagery for biomass retrieval in wetland vegetation. The vegetation canopy scattering model was modified and used to simulate the backscattering characteristics. Polarization decomposition was adopted to prepare the testing data with the model output for BP neural network. After obtaining the retrieval values of vegetation biomass, the values were compared with the filed - measured values. The results show that the introduction of the output data of vegetation canopy scattering model and polarimetric decomposition technique to the BP neural network algorithm could reduce the retrieval error effectively, and that the Quad - polarization imagery has broad application prospect in the field of biomass retrieval.
出处 《国土资源遥感》 CSCD 北大核心 2012年第3期38-43,共6页 Remote Sensing for Land & Resources
基金 中国科学院对地观测与数字地球科学中心主任科学基金项目(编号:Y1ZZ05101B)资助
关键词 生物量 植被冠层散射模型 全极化分解 BP神经网络 RADARSAT-2 biomass vegetation canopy scattering model polarization decomposition BP neural network Radarsat-2
  • 相关文献

参考文献30

  • 1Zhang X.On the Estimation of Biomass of Submerged Vegetation Using Landsat Thematic Mapper (TM) Imagery:A Case Study of the Honghu Lake,P R China[J].International Journal of Remote Sensing,1998,19(1):11-20.
  • 2Thenkabail P S,Smith R B,Pauw D E.Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics[J].Remote Sens Environ,2000,71(2):158-182.
  • 3Lu D S.The Potential and Challenge of Remote Sensing-based Biomass Estimation[J].International Journal of Remote Sensing,2006,27(7):1297-1328.
  • 4Steininger M K.Satellite Estimation of Tropical Secondary Forest Above Ground Biomass Data from Brazil and Bolivia[J].International Journal of Remote Sensing,2000,21(6/7):1139-1157.
  • 5Lu D S,Batistella M.Exploring TM Image Texture and Its Relationships with Biomass Estimation in Rondnia,Brazilian Amazon [J].Acta Amazonica,2005,35(2):249-257.
  • 6Shao Y,Liao J J,Wang C Z.Analysis of Temporal Radar Backscatter of Rice:A Comparison of SAR Observations with Modeling Results[J].Can J Remote Sens,2002,28(2):128-138.
  • 7Le T,Ribbes F,Wang L F,et al.Rice Crop Mapping and Monitoring Using ERS-1 Data Based on Experiment and Modeling Results[J].IEEE Trans Geosci Remote Sens,1997,35(1):41-56.
  • 8Shao Y,Fan X T,Liu H,et al.Rice Monitoring and Production Estimation Using Multitemporal Radarsat[J].Remote Sens Environ,2001,76(3):310-325.
  • 9Inoue Y,Kurosu T,Maeno H,et al.Season-long Daily Measurements of Multifrequency (Ka,Ku,X,C,and L) and Full-polarization Backscatter Signatures over Paddy Rice Field and Their Relationship with Biological Variables[J].Remote Sens Environ,2002,81(3):194-204.
  • 10Shen S H,Yang S B,Li B B,et al.A Scheme for Regional Rice Yield Estimation Using Envisat ASAR Data[J].Sci China Ser D:Earth Sci,2009,52(8):1183-1194.

二级参考文献48

  • 1陈洪达.菹草的生活史、生物量和断枝的无性繁殖[J].水生生物学集刊,1985,9(1):32-39. 被引量:31
  • 2钱迎倩 马克平 韩兴国.生物多样性研究的原理与方法[M].北京: 中国科学技术出版社,1944.148-152.
  • 3Wigneron J, Ferrazzoli P, Olioso A et al. A simple approach to monitor crop biomass from C-band radar data. Remote Sensing of Environment, 1999, 69: 179-188.
  • 4Townsend P A. Estimating forest structure in wetlands using multitemporal SAR. Remote Sensing of Environment, 2002,79: 288-304.
  • 5Mougin E, Proisy C, Marty Get al. Multifrequency and multipolarization radar backscattering from mangrove forests,IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 94-102.
  • 6Moreau S, Toan T L. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management. Remote Sensing of Environment, 2003, 84: 477-492.
  • 7Bergen K M, Dobson M C. Integration of remotely sensed radar imagery in modeling and mapping of forest biomass and net primary production. Ecological Modeling, 1999, 122: 257-274.
  • 8Newkirk R T, Wang F. A common knowledge database for remote-sensing and geographic information in a change-detection expert system. Environment and Planning B, 1990, 17(4): 395-404.
  • 9Sader S A, Waide R B, Lawrence W T et al. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sensing of Environment, 1989, 28: 143-156.
  • 10Kurvonen L, Pulliainen J, Hallikainen M. Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 198-205.

共引文献168

同被引文献185

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部