期刊文献+

基于离散余弦变换的时间序列相似性检索 被引量:2

Time Series Similarity Based on Discrete Cosine Transform
下载PDF
导出
摘要 在时间序列相似性研究领域已经发展了多种方法用于时间序列的表示,以达到降低序列维度的目的.作为一种经典的时域-频域转换方法,离散余弦变换目前已经在图形图像处理等领域得到了广泛的应用.将此方法应用于时间序列的表示上,在变换后的数据上进行相似性查询等操作.实验表明,相对以前的方法,这种方法具有明显的性能提升. In the research domain of time series similarity, there have been many approach that are developed to represent time series in the order of reducing the dimensionality. As one of the classic time domain-frequency domain transformation method, the discrete cosine transform has been widely used in the field of graphics and image processing. In this paper, we used this method to represent time series, and implenmet querying operation etc. on ttie transformed data. Our experiments indicate that this method obviously improve the performance compared with previous method..
出处 《计算机系统应用》 2012年第9期195-197,186,共4页 Computer Systems & Applications
关键词 时间序列 距离度量 相似性 维度约简 离散余弦变换 time series distance measure similarity dimension reduction discrete cosine transform
  • 相关文献

参考文献7

  • 1冯玉才,蒋涛,李国徽,朱虹.高效时序相似搜索技术[J].计算机学报,2009,32(11):2107-2122. 被引量:10
  • 2潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 3Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search In Sequence Database. Proc. of the 4th International Conference on Foundations of Data Organization and Algorithms. 1993.69-84.
  • 4Chart KP, Fu AWC. Efficient time series matching by wavelets. Proc. of 15th IEEE Int. Conf. on Data Enfineermg.1999. 126-133.
  • 5Korn F, Jagadish H, Falous C. Efficiently supporting and hoe queries in large datasets of time sequences. Proc. of the ACM SIGMOD International Conferences. 1997. 289 -300.
  • 6Keogh EJ, Chakrabarti K, Pazzani M, Mehrotra S. Dimen- sionality reduction for fast similarity search in large time series databses. Knowledge and Information Systems, 2001, 263-286.
  • 7Ahrned N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Trans. on Computers, 1974.90-93.

二级参考文献5

共引文献49

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部