期刊文献+

一种改进的基于正交子空间投影的高光谱图像异常检测算法 被引量:3

Anomaly Detection Based on Improved Orthogonal Subspace Projection Algorithm in Hyperspectral Imagery
下载PDF
导出
摘要 针对背景与目标能量差异较小的高光谱图像异常检测技术需求,提出了一种基于正交子空间投影的异常检测方法:首先利用正交子空间投影抑制背景信息;然后调整噪声,根据空间密度选取决策半径实现异常检测,并对结果进行形态滤波,消除大面积虚警。实验结果表明,本文算法能够检测到能量与背景差异较小的异常,且计算效率较高。 According to the demand of technology in hyperspectral anomaly detection with small energy differences between background and objectives, an improved orthogonal subspace projection algorithm is proposed. We firstly project the hyperspectral imagery onto the background orthogonal subspace to suppress background information. On this basis, after adjusting the noise, decision radiuscan be selected according to the spatial density realizing anomaly detection, and the morphological filter process as addition to eliminate the false alarm in large area. The experimental results show that, the algorithm proposed can detect the anomalies with small energy difference relative to the background, and has high calculation efficiency.
出处 《装备学院学报》 2012年第4期92-96,共5页 Journal of Equipment Academy
基金 部委级资助项目
关键词 高光谱图像 异常检测 正交子空间投影 噪声调整 hyperspectral imagery anomaly detection orthogonal subspace projection noise adjusting
  • 相关文献

参考文献7

  • 1REED I S,YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Transactions on Acoustic Speech and Signal Process,1990,(10):1760-1770.doi:10.1109/29.60107.
  • 2HARSANYI J C,CHANG C L. Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach[J].IEEE Transactions on Geoscience and Remote Sensing,1994,(04):779-785.
  • 3HARSANYI J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D].Baltimore:University of Maryland,1993.56-80.
  • 4张和发,李立萍,杨小牛,李万春.一种适用于微弱信号盲提取的白化方法[J].电子学报,2011,39(6):1297-1301. 被引量:8
  • 5CHANG C I,CHIANG S S. Anomaly detection and classification for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2002,(06):1314-1325.doi:10.1109/TGRS.2002.800280.
  • 6PRAZA A,MARTINEZ P,PEREZ R. Spatial/spectral endmember extraction by multimensional morphological operations[J].IEEE Transactions on Geoscience and Remote Sensing,2002,(09):2025-2041.
  • 7CHANG C I,XIONG W,CHEN H M. Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery[J].IEEE Journal of Selected Topics in Signal Processing,2011,(03):504-520.

二级参考文献4

共引文献7

同被引文献30

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部