期刊文献+

基于稀疏对角矩阵的语音信号压缩感知 被引量:1

Compressed sensing of speech signal using sparse diagonal matrix
下载PDF
导出
摘要 探索压缩感知理论在语音信号重构中的应用,研究测量矩阵选取对语音信号重构效果的影响。改进传统随机,托普利兹,循环等测量矩阵,尝试将稀疏对角矩阵应用于测量矩阵完成对语音信号的非相干测量。在语音信号上进行实验,分别采用稀疏对角结构测量矩阵和传统测量矩阵,对比它们使用StOMP算法重构语音信号的效果。实验结果表明,采用改进的稀疏对角循环矩阵重构语音信号,较传统矩阵重构的精确度有明显提高,运行时间也有明显缩短。 The application of compressed sensing in speech signal reconstruction is explored,and the effect of the selection of measurement matrix for speech signal reconstruction is studied.Then the traditional measurement matrix,such as Radom,Toeplitz,Circulate,are improved,and the sparse diagonal matrix is tried to be use in measurement matrix to finish the inco-herent measurement of speech signal.The experiments are made on speech signal,by using sparse diagonal structure measurement matrix and traditional measurement matrix for comparison of the effect of speech signal reconstruction by StOMP algorithm.The experimental results show that the reconstruction accuracy and the operation time of using the improved sparse diagonal circulate matrix for speech signal reconstruction are superior to that of using traditional matrix.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第9期3526-3530,共5页 Computer Engineering and Design
基金 安徽大学研究生学术创新研究基金项目(ygh090078)
关键词 稀疏对角矩阵 测量矩阵 语音信号 信号重构 压缩感知 sparse diagonal matrix measurement matrix speech signal signal reconstruction compressed sensing
  • 相关文献

参考文献17

  • 1Donoho D. Compressed sensing [J]. IEEE Trans on Informa- tionTheory, 2006, 52 (4): 1289-1306.
  • 2Baraniuk R G. Compressive sensing (lecture notes) [J]. IEEE Signal Processing Magazine, 2007, 24 (4). 118-121.
  • 3Candes E J, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies [J]. IEEE Transae- tions on Information Theory, 2006, 52 (12): 5406-5425.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles. Exact signal reconstruction from highly incomplete frequency in- formation [J]. IEEE Trans on Information Theory, 2006, 52 (2) : 489-509.
  • 5Candes E, Tao T. Decoding by linear programming [J]. IEEE Trans on Information Theory, 2005, 51 ( 12 ). 4203-4215.
  • 6Romberg J. Imaging via compressive sampling [J]. IEEE Sig- nal Processing Magazine, 2008, 25 (2): 14-20.
  • 7Duartem, Davenportm, Takhar D, et al. Single pixel imaging via compressive sampling [J]. IEEE Signal Processing Maga- zine, 2008, 25 (2): 83-91.
  • 8Eladm, Starck J L, Querre P, et al. Simultaneous cartoon and texture image inpainting usingmorphological component analysis (MCA) [J]. Appl Comput Harmon Anal, 2005, 19 (3):340-358.
  • 9Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207-1223.
  • 10Strohmer T, Hermann ~ Compressed sensing radar [C]. IEEE Proc Int Conf Acoustic, Speech, and Signal Processing, 2008. 1509-1512.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部