期刊文献+

基于粒子群算法的驱动机构多目标动平衡优化 被引量:3

The Multi-objective Optimization of Dynamic Balance in Driving Mechanism Based on the Particle Swarm Algorithm
下载PDF
导出
摘要 针对机构动平衡优化问题,综合考虑惯性力、运动副反力和输入扭矩三项动平衡优化性能指标。以冷轧管机驱动机构为对象,根据经典多目标处理方法中的理想点法,建立了衡量机构动平衡优化程度的数学模型。该模型采用粒子群智能算法进行实时优化,算法效率高,能够快速准确地获得平衡参数最优解,实现机构系统整体优化效果。仿真分析表明,该方法能够尽可能地逼近各项平衡性能指标的最优值,有效地解决了机构的多目标动平衡优化问题。 In this paper, three dynamic balancing performances including inertia force, subsidiary reacting force and inputting torque are considered for the specific problem in dynamic balance optimization. For the driving mech- anism of cold rolling mills, the mathematic model for measuring the degree of dynamic balance optimization is con- structed based on the ideal point method. It could be able to obtain the optimal parameters by proceeding to real- time optimization based on the particle swarm algorithm quickly and accurately. The simulation results indicate that the present method can achieve the optimal value of every dynamic balance performance and effectively solve muhi- objective dynamic balance problems.
出处 《机械科学与技术》 CSCD 北大核心 2012年第9期1474-1479,共6页 Mechanical Science and Technology for Aerospace Engineering
关键词 粒子群算法 驱动机构 多目标优化 动平衡 particle swarm algorithm driving mechanism multi-objective optimization dynamic balance
  • 相关文献

参考文献8

  • 1何亚银,吴立言,贺朝霞,庞亮亮.基于仿真的机构动力综合优化平衡研究[J].机械设计,2006,23(4):59-62. 被引量:6
  • 2Zitzler E. Evolution Algorithms for Multi-objective Oplimiza- lion:Methods and Applications[ D ]. Ph D thesis. Swiss Federal Institute of Technology, Zurich, 1999.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Pro- ceedings of IEEE International Conference Neural Networks [ C], Perth, Australia, 1995, (4) :1942 - 1948.
  • 4马纲,李盘荣,陈晓舟.粒子群算法在重载齿轮多目标设计中的应用[J].洛阳理工学院学报(自然科学版),2009,19(2):35-38. 被引量:3
  • 5朱小平,王涛.基于多目标粒子群算法的切削用量多决策优化研究[J].组合机床与自动化加工技术,2010(3):27-29. 被引量:13
  • 6Tang W X, Sun J J, Wang B. Study on dynamic balance in main driving mechanism of cold roiling mill based on the particle swarm optimization algorithm [ J ]. Applied Mechanics and Materials, 2011, (55-57) :633 -638.
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer [ A ]. IEEE International Conference on Evolutionary Computation [ C ], Piscataway, N J, IEEE Service Center, 1998:69 - 73.
  • 8Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[ A]. Proceedings of Sixth International Symposium on Micro Machine and Human Science [ C ], Nagoya, Japan, 1995:39 - 43.

二级参考文献14

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 3Falah B,Cosselin C,Cloutier L.Experimental and numerical inwestigation of the meshing cycleratio in spiral bevel gears[J].Mesh Mach Theory,1998,33(1/2):21-37.
  • 4R Eberhart, J Kennedy. A new optimizer using particle swarm theory. In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science. Piscataway, N J: IEEE Service Center, 1995:39 - 43.
  • 5J Kennedy, R Eberhart. Particle swarm optimization. IEEE Int'l conf on Neutral Networks,Perth,Australia, 1995.
  • 6Margarita Reyes-Sierra, Carlos A. Coello Coello. Muhi-Objective Particle Swarm Optimizers : A Survey of the State-of-the-Art [ J ]. International Journal of Computational Intelligence Research, 2006,2 ( 3 ) : 287 - 308.
  • 7Tricamo S J,Lowen G G.Simultaneous optimization of dynamic reactions of a four-bar linkage with prescribed maximum shaking force[J].Transactions of ASME,1983,105:520-525.
  • 8Niu ming Qi,Penestri E.Optimum balancing of four-bar linkages:a refined algorithm[J].Mech.Mach.Theory,1991,26 (3):337 -348.
  • 9艾兴,肖诗纲.切削用量简明手册[M].北京:机械工业出版社,2002.
  • 10李哲.考虑输入速度波动的连杆机构平衡[J].机械工程学报,1997,33(4):77-82. 被引量:4

共引文献19

同被引文献11

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部