期刊文献+

基于图像结构信息复数表示与奇异值分解的灰度图像质量评价方法 被引量:7

Image quality assessment based on complex number representation of image structure and singular value decomposition
原文传递
导出
摘要 为了进一步突出图像结构中人眼敏感的重要特征,采用复数矩阵表示图像结构,将图像的局部方差和像素灰度值分别作为复数的实部和虚部。进而对复数矩阵进行分块奇异值分解,分析了传统奇异值分解图像质量评价方法的特点,将复数矩阵每一分块奇异值分布的标准差作为分块图像结构的表征,分别计算参考图像与待测图像对应图像分块奇异值标准差,从而得到了图像结构失真映射图谱,通过计算图谱中的数据分布特征得到最终的量化评价结果。采用LIVE数据库中包含5种失真类型的779幅测试图像验证所提的算法。试验结果表明,本文方法采用复数矩阵描述图像结构信息,平衡了对各种失真类型的敏感程度,与人眼视觉感知(HVS)的一致性优于传统方法。 In order to accentuate the complicated information that human eyes are sensitive to in an image,complex matrix is used to describe image structure. Local variance and pixel value are taken as the real part and imaginary, respectively. Singular value decomposition is performed on each block of the complex matrix, but standard deviation of the singular value distribution is used as the description of the image block. The standard deviation is calculated for the reference image and distorted image, respectively. The matrix composed of standard deviations corresponding to each block is used to obtain the distor tion map. Quantified results are obtained by calculating the data distribution of the map. 779 distorted images in the LIVE database are used to test the performance of the proposed method. Experimental results show that the performance improvement is achieved by using complex matrix to describe image structure, which balances the distortion sensitivity. Consistency with the human visual perception of the proposed method is better than that of traditional methods.
作者 王宇庆
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第9期1827-1834,共8页 Journal of Optoelectronics·Laser
基金 中国博士后科学基金(20080441004)资助项目
关键词 图像质量评价 复数 局部方差 奇异值分解 image quality assessment complex number local variance singular value decomposition
  • 相关文献

参考文献19

  • 1SHEN Ji, LI Qin, Erlebacher Gordon. Hybrid no-reference Natural image quality assessment of noisy, blurry, JPEG2000,and JPEG images[J]. IEEE Transactions on Image Processing, 2011,20(8):2089-2098.
  • 2伍世虔,谢志华,方志军.图像质量快速盲检测及其在视觉系统中的应用[J].光电子.激光,2010,21(2):279-284. 被引量:1
  • 3Parvez Sazzad Z M, Kawayoke Y, Horita Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing: Image Communication, 2008,23(4):257-268.
  • 4Zhang J,Thinh M L E. A new no-reference quality metric for JPEG2000 images[J]. IEEE Transactions on Consumer Electronics, 2010,56 (2) :743-750.
  • 5郭迎春,袁浩杰,吴鹏.一种基于无参考的块效应评价方法[J].光电子.激光,2011,22(3):465-468. 被引量:4
  • 6Suresh S, Venkatesh B R, Kim H J. No-reference image quality assessment using modified extreme learning machine classifier[J]. Applied Soft Computing, 2009,9(2) : 541-552.
  • 7Zhou W,Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002,9(3) : 181-184.
  • 8ZHOU Wang,Bovik A O,Sheikh H R,et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13 (4) :600-612.
  • 9Santiago Aja-fernandez, Raul San Jose Estepar, Carlos Alberola-Lopez,et al. Image quality assessment based on local variance[A]. Proc. of 28th IEEE EMBS Annual International Conference[C]. 2006,4815-4818.
  • 10Aleksandr S, Alexander G, Ahmet M E. An SVD-based grayscale image quality measure for local and global assessment[J]. IEEE Transactions on Image Processing, 2006,15 (2) : 422-429.

二级参考文献59

共引文献65

同被引文献124

  • 1梁毅雄,龚卫国,潘英俊,李伟红,刘嘉敏,张红梅.基于奇异值分解的人脸识别方法[J].光学精密工程,2004,12(5):543-549. 被引量:40
  • 2Tumblin J,Rushmeier H E. Tone reproduction for realistic images [J]. IEEE Computer Graphics & Applications,1993,13(6):42-48.
  • 3Erik Reinhard, Michael Stark, Peter Shirley, et al. Photo- graphic tone reduction for digital images[J]. ACM Trans- actions on Graphics, 2002,2] (3) : 267-276.
  • 4Kirk A G,O'Brien,J. F. Perceptually based tone mapping for low-light conditions[J]. ACM Transactions on Graph- ics,2011,42 : 1-10.
  • 5Ferradans S, Bertalmio M, Provenzi E,et al. An analysis of visual adaptation and contrast perception for tone map- ping[J]. Pattern Analysis and Machine Intelligence, 201], 33(10) .. 2002-2012.
  • 6Lee J W, Park R H. Noise reduction and adaptive contrast enhancement for local tone mapping [ J]. IEEE Transac- tions on Consumer Electronics,2012,58(2) ;578-586.
  • 7Fairchild M D,Johnson G M. The iCAM framework for im- age appearance,differences and quality[J].Journal of E- lectronic Imaging, 2004,13 : 126-138.
  • 8Kuang J T, Johnson G M, Fairchild M D. iOAM06:a refined image'appearance model for HDR image rendering [J]. Journal of Visual Communication and Image Representa- tion, 2007,18 ( 5 ) .. 406-414.
  • 9Kim H, Lee S, Bae T, et al. Color saturation correction in iCAM06 for HDR imaging[A]. Proc. of The 2010 Interna- tional Conference on Image Processing, Computer Vision and Pattern Recognition[C]. 2010,2 .. 628-631.
  • 10Chae S M,Lee S H,Kwon H J,et al. A tone compression model for the compensation of white point shift generated from HDR rendering[J]. IEICE Transactions on Funda- mentals of Electronics, Communications and Computer Sciences, 2012, E95-A(8) :1297-1301.

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部