期刊文献+

矩阵的秩与其非零特征值个数相等的条件 被引量:5

The Equality Conditions between the Rank of a Matrix and Its Numbers of Nonzero Eigenvalue
下载PDF
导出
摘要 证明了n阶方阵A的秩r(A)与其非零特征值个数μ(A)之间的关系:r(A)≥μ(A).得出了矩阵A可逆和矩阵A可对角化是r(A)=μ(A)的两个充分条件;矩阵A没有形如xm(m2)的初等因子是r(A)=μ(A)的充分必要条件. The relationship between the rank of matrix and its number of nonzero eigenvalue is proved,that is r(A)≥u(A).Following conclusion are educed,the two sufficient condition for r(A)=u(A) are that matrix A is invertible and matrix A is diagonalizable,the Necessary and Sufficient Conditions for r(A)=u(A) is that there is not the elementary factor whose form is xm(m≥2) in elementary factors of matrix A.
作者 张景晓
机构地区 德州学院数学系
出处 《德州学院学报》 2012年第4期5-8,共4页 Journal of Dezhou University
关键词 矩阵的秩 非零特征值个数 初等因子 rank of matrix number of nonzero eigenvalue elementary factor
  • 相关文献

参考文献2

二级参考文献1

共引文献1

同被引文献24

  • 1于清江,包研科.用n阶方阵的迹判定其互异特征值的个数[J].大学数学,2006,22(5):157-159. 被引量:2
  • 2Nikuie M, Mimia M K, Mahmoudi Y. Some results about the index of matrix and Drazin inverse [J]. Mathematical Sciences, 2010, 4(3): 283-294.
  • 3Bemstein D S. Matrix mathematies: theory, facts, and formulas[M]. 2nd ed. Princeton and Oxford: Princeton University Press, 2009.
  • 4Wang G, Wei Y, Qian S. Generalized inverse theory and computations[M]. Beijing: Science Press, 2003.
  • 5Chen Meixiang, Lyu Hongbin, Feng Xiaoxia, et al. The essential (m,1)-idempotent matrix and its minimal polynomial[J]. International Journal of Applied Mathematics and Statistics, 2013, 41 (11): 31-41.
  • 6Horn R A, Johnson C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
  • 7Zhang Fuzhen. Matrix theory basic results and techniques [M]. 2nd ed. New York: Springer, 2011.
  • 8Yan Wu, Daniel F Linder. On the eigenstrucmres of fimetional K-potent matrices and their integral forms[J]. WSEAS Transactions on Mathematics, 2010, 9(4):244- 253.
  • 9Nikuie M,Mirnia M K,Mahmoudi Y.Some results about the index of matrix and Drazin inverse[J].Mathematical Sciences,2010,4(3 ):83-294.
  • 10Bernstein D S.Matrix mathematics theory,facts,and formulas[M].2nd edi.Princeton:Princeton University press,2009.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部