期刊文献+

基于三角小波的Galerkin边界元法

A Galerkin Boundary Element Method Based on Interpolatory Hermite Trigonometric Wavelets
下载PDF
导出
摘要 采用三角小波函数作为基函数和检验函数提出了一种Galerkin边界元法.当问题区域是单位圆时,推导了系数矩阵元素的计算公式,其显示了大多数元素是零,从而系数矩阵是稀疏的,且可由一些循环的对称或反对称子矩阵构成,因此存储空间和计算复杂度大大减少.数值算例验证了方法的有效性. A Galerkin boundary element method based on trigonometric wavelets is proposed in this paper.In this approach,the Hermite trigonometric wavelets are employed as the trial and test functions of variational formulation.The simple computational formulae of the entries in coefficient matrix are obtained when the domain is a unit disk.Most of the matrix entries are naturally zero without any truncating technology.It shows that the coefficient matrix consists of some symmetric and antisymmetric circular submatrices.Hence the memory spaces and computational complexity can be reduced greatly.Finally,some test examples are presented.
出处 《德州学院学报》 2012年第4期14-18,共5页 Journal of Dezhou University
基金 中央高校基本科研业务费资助(CDJXS10 1000 17)
关键词 三角小波 Galerkin边界元法 稀疏矩阵 Trigonometric wavelets Galerkin BEM Sparse matrix
  • 相关文献

参考文献10

  • 1V. Rokhlin. Rapid solution of integral equations of classical potential theory[J]. J. Comput. Phys. 1985, 60:187 - 207.
  • 2W. Hackbusch* 2. P. Nowak, On the fast matrix multiplication in the boundary element method by panel clustering[J]. Numer. Math. 1989 54 :463 - 491.
  • 3K. Abe,K. Koro,K. Itami. An h — hierarchical Galerkin BEM using Haar wavelets [J]. Eng. Anal. Bound. Elem.,2001,25(7) :581 —591.
  • 4K. Koro,K. Abe. Non — orthogonal spline wavelets for boundary element analysis[J]. Eng. Anal. Bound.Elem.,2001,25:149-164.
  • 5E. Quak. Trigonometric wavelets for Hermite interpolation[J], Math. Comput. , 1996 , 65 ; 683 -722.
  • 6W. S. Chen, W. Lin. Galerkin trigonometric wavelet methods for the natural boundary integral equations[J]. Applied Mathematics and Computation,2001,121(1): 75-92.
  • 7Z. Shan,Q. Du. Trigonometric wavelet method for some elliptic boundary value problems [J]. Journal of Mathematical Analysis and Applications, 2008 344(2):1105—1119.
  • 8J. Gao,Y. L. Jiang. Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel [J ]. J. Comput. Appl. Math.,2008,215:242-259.
  • 9J. Xiao,D. Zhang,L. Wen. Fully discrete Alpert multiwavelet Galerkin BEM in 2D[J]. Eng. Anal. Bound. Elem.,2008,32:91 — 99.
  • 10M. Li’ J, Zhu, X. Li. A multiwavelet Galerkin method for Stokes problems using boundary integral equations[J]. Eng. Anal. Bound. Elem. 2010,34 :1009—1017.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部