期刊文献+

双轴应变对纤锌矿GaN、AlN、InN及其合金电子有效质量的影响(英文)

Effects of Biaxial Strain on Electron Effective Mass of Wurtzite AlN,GaN,InN and Their Ternary Alloys
下载PDF
导出
摘要 利用第一性原理计算方法密度泛函理论的局域密度近似计算了纤锌矿氮化铝(AlN)、氮化镓(GaN)、氮化铟(InN)及其合金在双轴应变下的电子有效质量。对于GaN和AlN,张应变使电子有效质量增大而压应变使电子有效质量减少,但却使InN电子有效质量在张应变和压应变下都增大。由于三元合金(AlxGa1-xN,InxGa1-xN和AlxIn1-xN)与GaN异质结的新颖特性,同时计算了三元合金在松弛和应变下电子有效质量的变化趋势。受制于GaN基板的平面应力,外延AlxGa1-xN和AlxIn1-xN电子有效质量将减少,而InxGa1-xN电子有效质量增大,且随着In含量变大而更显著。对铟氮化合物应变下电子有效质量异常的机制也做了讨论。 The electron effective mass for relaxed and in-plane biaxial strained wurtzite AIN, GaN, InN and their ternary alloys (AlxGa1-xN, InxGa1-xN and AlxIn1-xN) was calculated using the density functional theory with local density approximation. The tensile strain increases the electron effective mass and the compressive strain has an opposite effect on GaN and A1N, while the InN is an exception that the effective mass increases under both tensile and compressive strain. Compared with the relaxed alloys, the electron effective mass of alloys strained with coherent epitaxial GaN substrate decreases with the increase of lattice match for AlxGa1-xN and AlxIn1-xN. However, for InxGa1-xN, the strain increases the electron effective mass, especially for large In mole fraction due to the large compressive strain. The unusual mechanism of the effective mass for In Nitride is also discussed.
机构地区 电子科技大学
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2012年第4期318-324,340,共8页 Research & Progress of SSE
基金 国家自然基金资助项目(50932002 51172035)
关键词 Ⅲ族氮化物 电子有效质量 双轴应变 能带结构 第一性原理 II-nitride electron effective mass biaxial strain band structure first principles
  • 相关文献

参考文献31

  • 1Nakamura S, Senoh M, Iwasa N, et al. High-bright- ness InGaN blue, green and yellow light-emitting diodes with quantum well structures [J]. Japanese Journal of Applied Physics-Part 2 Letters, 1995, 34 (7) : 797-799.
  • 2Nakamura S, Senoh M, Nagahama S, et al. InGaN- based multi-quantum-well-structure laser diodes [J]. Japanese Journal of Applied Physics, 1996,35 (1B): L74-L76.
  • 3Hoke W, Kennedy T, Mosca J, et al. AIGaN/GaN high electron mobility transistors on 100 mm silicon substrates by plasma molecular beam epitaxy [J]. Journal of Vacuum Science & Technology B: Micro- electronics and Nanometer Structures, 2011,29 (3) : 03C107-103C107-105.
  • 4ChiuHC, Lin C K, Lin C W, et al. High perfor- mance A1GaN/GaN HEMT with lattice matched ZnO gate interlayer[J]. Journal of The Electrochemical So- ciety, 2011,158(3) : 294-298.
  • 5Park S H, Ahn D, Koo B H, et al. Optical gain im- provement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers [J]. Applied Physics Letters, 2010,96(5) : 0511061- 0511063.
  • 6Zhang Jihua, Yang Chuanren, Wu Song, et al. Theo- retical design of GaN/ferroeleetric heterostructure: Toward a strained semiconductor on ferroelectrics[J]. Applied Physics Letters, 2009, 95 (12): 122101- 122103.
  • 7Jogai B. Effect of in-plane biaxial strains on the band structure of wurtzite GaN [J]. Physical Review B, 1998, 57(4):2382-2386.
  • 8Chu M, Koehler A D, Gupta A, et al. Simulation of A1GaN/GaN high-electron-mobility transistor gauge factor based on two-dimensional electron gas density and electron mobility[J]. Journal of Applied Physics, 2010, 108(10) : 104502-104507.
  • 9Liou B T, Yen S H, Kuo T K. Vegardts law devia- tion in band gaps and bowing parameters of the wurtzite Ⅲ-nitride ternary alloys[J3. Proceedings of SPIE, 2005,5628(4) :296-305.
  • 10Dridi Z, Bouhafs B, Ruterana P. First-principles in- vestigation of lattice constants and bowing parameters in wurtzite AI,Gal.xN, InxGal.xN and InxAll-xN alloys[J]. Semiconductor Science and Technology, 2003,18 (9): 850-856.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部