期刊文献+

谐振子薛定谔方程的超对称解法 被引量:2

Suppersymmetric method for the solution of Schrdinger equation of harmonic oscillator
下载PDF
导出
摘要 通过构造哈密顿量与谐振子系统哈密顿量对易的超对称系统,量子谐振子的性质就可以通过对超对称系统的研究来得到.利用超对称系统的性质,在没有用到厄米多项式的情况下,给出了谐振子本征函数中展开系数间的递推关系,由递推关系可以直接得到本征函数.此方法下得到的归一化本征函数与用厄米多项式表达的本征函数完全相同,并且本征函数的宇称可以明显的显示出来. By constructing the supersymmetric system which Hamiltonian commutates with that of harmonic os-cillator, the properties of harmonic oscillator can be obtained through the investigation of supersymmetric system. Based on the property of supersymmetric system, the recursion relation between the expanding parameter in the ei-genfunction of harmonic oscillator is obtained without using the theory of Hermite polynomials, then the eigenfunc-tion can be directly found from the recursion relation. The normalized eigenfunction obtained is actually the same as that represented through Hermite polynomials, and the parity of the eigenfunction can be evidently exhibited.
出处 《大学物理》 北大核心 2012年第9期7-9,共3页 College Physics
基金 中国民航大学科研启动基金项目(09qd02S)资助
关键词 量子谐振子 薛定谔方程 本征函数 超对称系统 quantum harmonic oscillator Schrtidinger equation eigenfunction supersymmetric system
  • 相关文献

参考文献11

  • 1周世勋.量子力学[M].2版,北京:高等教育出版社,2002.
  • 2王曼英,王永昌.如何构造阶梯算符[J].大学物理,1993,12(7):24-25. 被引量:7
  • 3龙桂鲁,裴寿镛,等.量子力学新进展第三辑[M].北京:清华大学出版社,2005.
  • 4Witten E. Dynamical breaking of supersymmertry [ J]. Nucl Phys A,1981,188:513-515.
  • 5Shifman M A. ITEP lectures on particle physics and field theory [ M ]. Singapore : World Scientific, 1999.
  • 6Bijan Kumar Bagchi. Supersymmetry in quantum and classical mechanics [ M ]. Boca Raton, Chapman & Hall/CRC ,2001.
  • 7de Crombrugghe M, Rittenberg V. Supersymmetric quantum mechanics [ J ]. Annals of Physics, 1983, 151: 99-126.
  • 8Cooper F, Khare A, Sukhatme U. Supersymmetry and quantum mechanics [ J]. Physics Reports, 1995, 251 : 267-385.
  • 9Lahiri A,Roy P K, Bagchi B. supersymmtry in quantum mechanics [ J]. International Journal of Modern Physics A, 1990,8:1383-1456.
  • 10崔红宇,田维,杨新娥.超对称量子力学中超势的应用[J].山西师范大学学报(自然科学版),2006,20(2):41-43. 被引量:3

二级参考文献19

  • 1马中骐,许伯威.精确的量子化条件和不变量[J].物理学报,2006,55(4):1571-1579. 被引量:11
  • 2[1]Witten.E.Dynamical breaking of supersymmertry[J].Nucl Phys A,1981,188:513~516.
  • 3[2]Gendenshtein L E.Derivation of exact spectra of the Schr?dinger equation and a Hamilton hierartry[J].JETP Lett,1983,38:356~358.
  • 4[3]Sukumar C V.Supersymmetric factorization of the Schr?dinger equation and a Hamiltonian hierarchy[J].J Phys,1985,A18:L57;Supersymmetric quantum mechanics of one-dimensional systems[J].J Phys,1985,A18:2917~2920.
  • 5[4]Crooper F,Khare A.Sukhatme U P.Supersymmettic and Quantum Mechanics[J].Phys Rep,1995,251:267~375.
  • 6[5]Bulent Gonul,Ilker Zorba.Supersymmetric solutions of non-central potential[J].Physics Letters A,2000,269:83~88.
  • 7[6]Wen chao qiang,Run suo Zhou,Yang Gao.supersymmetry and SWKB approach to the Dirac equation with a coulomb potential in 2+1 dimensions[J].Physics letter A,2004,333:8~12.
  • 8[7]Fred Cooper,Joseph N Gnocchi.Relationship between supersymmetry and solvable potential[J].Phys Rev D,1987,36:2458~2467.
  • 9[10]Filho E D,Ricotta,R M.Morse potential energy spectra through the variational method and supersymmetry[J].Phys Lett A,2000,269:269~271.
  • 10曾谨言.量子力学导论.北京:北京大学出版社,2001

共引文献10

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部