期刊文献+

边界条件含有特征参数的Sturm-Liouville算子的唯一性定理 被引量:1

A Uniqueness Theorem for Sturm-Liouville Operators with Eigenparameter in Boundary Conditions
下载PDF
导出
摘要 建立了一类Sturm-Liouville问题的唯一性定理.对于固定的n∈Z,证明了该Sturm-Liouville问题的第n个特征值λ_n(q,a)关于a是严格单调的.对不同系数的a_k,如果能够测得第n个特征值的谱集合{λ_n(q,a_k)}_(k=1)^(+∞),则谱集合{λ_n(q,a_k)}_(k=1)^(+∞)能够唯一确定[0,π]上的势函数q(x). This paper establishes a uniqueness theorem for a kind of Sturm-Liouville prob lem. For a fixed index n (n ∈ Z), it is shown that the n-th eigenvalue An(q, a) of the +∞ Sturm-Liouville problem is strictly monotonous in a. If the spectral set {λn(q,ak)}^+∞ k=1 can be measured for distinct ak, then the potential q(x) on the interval [0, π] can be uniquely determined by the spectral set {λ(q,ak)}^+∞ k=1.
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第4期441-448,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11171152) 江苏省自然科学基金(No.BK2010489)资助的项目
关键词 唯一性定理 Sturm—Liouville问题 第n特征值 参数边界条件 Uniqueness theorem, Sturm-Liouville problem, n-th eigenvalue, Eigenparameter dependent on boundary condition
  • 相关文献

参考文献16

  • 1Gaskell R E. A problem in heat conduction and an expansion theorem [J]. Amer J Math, 1942, 64:447-455.
  • 2Iton C T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions [J]. Proc Roy Soc Edinburgh, 1977, 77A:293-308.
  • 3Binding P A, Browne P J, Seddighi K. Sturm-Liouville problems with eigenparameter dependent boundary conditions [J]. Proc Roy Soc Edinburgh, 1993, 37:57-72.
  • 4Mclaughlin J R, Polyakov P L. On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues [J]. Journal of Differential Equations, 1994, 107:351-382.
  • 5Li Y S. 'On an inverse eigenvalue problem for a second-order differential equation with boundary dependence on the parameter [J]. Acta Math Sinica, 1965, 15(1):375-381.
  • 6Hochstadt H. On inverse problems associated with second-order differential operators [J]. Acta Math, 1967, 119(1):173-192.
  • 7Panakhov E S, Koyunbakan H, Ic U. Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition [J]. Inverse Problems in Science and Engineering, 2010, 18(1):173-180.
  • 8McLaughlin J R, Rundell W. A uniqueness theorem for an inverse Sturm-Liouville problem [J]. Journal of Mathematical Physics, 1987, 28(7):1471-1472.
  • 9Levitan B M. On the determination of the Sturm-Liouville operator from one and two spectra [J]. Mathematics of the USSR Izvestija, 1978, 12:179-193.
  • 10Koyunbakan H. Inverse spectral problem for some singular differential operators [J]. Tamsui Oxford Journal of Mathematical Sciences, 2009, 25(3):277-283.

二级参考文献20

  • 1Ambartsumyan V A. Lrber eine frage der eigenwerttheorie [J]. Zeitschrift fiir Physik, 1929, 53:690-695.
  • 2Borg G. Eine umkehrung der Sturm-Liouvillesehen eigenwertaufgabe [J]. Acta Mathe- matica, 1945, 78:1-96.
  • 3Levinson N. The inverse Sturm-Liouville problem [J]. Mathematica Tidsskrift B, 1949, 1949:25-30.
  • 4Levitan B M. On the determination of the Sturm-Liouville operator from one and two spectra [J]. Mathematics of the USSR Izvestija, 1978, 12:179-193.
  • 5Sakhnovich L. Half inverse problems on the finite interval [J]. Inverse Problems, 2001, 17:527-532.
  • 6McLaughlin J R, Rundell W. A uniqueness theorem for an inverse Sturm-Liouville problem [J]. Journal of Mathematical Physics, 1987, 28(7):1471-1472.
  • 7Marlettaa M, Zettlb A. The friedrichs extension of singular differential operators [J]. Journal of Differential Equations, 2000, 160(2):404-421.
  • 8Hinton D B, Lewis R T. Discrete spectra criteria for singular differential operators with middle terms [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1975, 77:337-347.
  • 9Panakhov E S, Yilmazer R. On inverse problem for singular Sturm-Liouville operator from two spectra [J]. Ukrainian Mathematical Journal, 2006, 58(1):147-154.
  • 10Koyunbakan H. Inverse spectral problem for some singular differential operators Tamsui Oxford Journal of Mathematical Sciences, 2009, 25(3):277-283.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部