摘要
A composite coating was fabricated on pure magnesium by hydrothermal treatment in order to reduce its degradation in body environment. The coating was character- ized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD pattern showed that the main composition of the coating was a mixture of CaSiO3, MgSiO3 and Mg(OH)2. Electrochemical test showed that the corrosion current den- sity (icor~) of the coated magnesium was decreased by about two orders of magnitude compared with that of the bare magnesium, and the EIS measurement also showed that the corrosion resistant performance of the coated magnesium was significantly enhanced. Meanwhile, weight loss test showed that the weight loss of the coated magnesium was lower than that of the bare magnesium. Hence, the present study indicated that the composite coating could greatly slow down the degradation of pure magnesium.
A composite coating was fabricated on pure magnesium by hydrothermal treatment in order to reduce its degradation in body environment. The coating was character- ized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD pattern showed that the main composition of the coating was a mixture of CaSiO3, MgSiO3 and Mg(OH)2. Electrochemical test showed that the corrosion current den- sity (icor~) of the coated magnesium was decreased by about two orders of magnitude compared with that of the bare magnesium, and the EIS measurement also showed that the corrosion resistant performance of the coated magnesium was significantly enhanced. Meanwhile, weight loss test showed that the weight loss of the coated magnesium was lower than that of the bare magnesium. Hence, the present study indicated that the composite coating could greatly slow down the degradation of pure magnesium.
基金
financially supported by the National Natural Science Foundation of China (No. 30970715)
National Basic Research Program of China(No. 2012CB619101)