期刊文献+

几何、调和平均组合的最佳广义对数平均界

Optimal generalized logarithmic mean bounds for the combination of geometric and harmonic means
下载PDF
导出
摘要 应用初等微分学知识,对几何平均、调和平均的几何组合与广义对数平均进行了比较,解决了如下问题:对于α∈(0,1),使双向不等式Lp(a,b)≤Gα(a,b)H1-α(a,b)≤Lq(a,b)对所有的a,b>0成立的最大p和最小q分别是多少? It was compared the generalized logarithmic mean with the geometric combination of geometric and harmonic means by the elementary differential calculus. It was discussed for a∈(0,1) , the greatest value p and the least value q, such that the inequality Lp(0,6)≤G^ct(0,b)H^t-a(a,b)≤Lq(a,b) held for all a, b 〉0.
作者 张帆 钱伟茂
出处 《浙江师范大学学报(自然科学版)》 CAS 2012年第3期252-257,共6页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江广播电视大学2009年度科学研究课题(XKT09G21) 湖州市自然科学基金资助项目(2012C50008)
关键词 不等式 广义对数平均 几何平均 调和平均 inequality generalized logarithmic mean geometric mean harmonic mean
  • 相关文献

参考文献17

  • 1Stolarsky K B. The power and generalized logarithmic means [ J ] Amer Math Monthly, 1980,87 (7) :545-548.
  • 2Pearce C E M, Pecaric J. Some theorems of Jensen type for generalized logarithmic means [ J ]. Rev Roumaine Math Pures Appl, 1995,40(9/10) :759-795.
  • 3Mond B, Pearce C E M, Pecaric J. The logarithmic mean is a mean [ J ]. Math Commun, 1997,2 (1) :35-39.
  • 4Chen Chaoping, Qi Feng. Monotonicity properties for generalized logarithmic means [ J ]. Aust J Math Anal App1,2004,1 (2) :2-4.
  • 5Abuhany A A K, Salem S R, Salman I M. On steffensen's integral inequality with applications [ J ]. J Rajasthan Aead Phys Sci ,2006,5 (1) :1-12.
  • 6Qi Feng, Chen Shouxin, Chen Chaoping. Monotonicity of ratio between the generalized logarithmic means [ J ]. Math Inequal Appl,2007,10 (3) : 559-564.
  • 7Shi Huanshi. Schur-convex functions related to Hadamard-type inequalities[J]. J Math Inequal,2007,1 (1) :127-136.
  • 8Chen Chaoping. The monotonicity of the ratio between generalized logarithmic means [ J ]. J Math Anal Appl,2008,345 (1) :86-89 .
  • 9Qi Feng, Li Xiaoai, Chen Shouxin. Refinements, extensions and generalizations of the second Kershaw's double inequality [ J ]. Math Inequal Appl,2008,11 (3) :457-465.
  • 10Pittenger A O. The logarithmic mean in n variables [ J ]. Amer Math Monthly, 1985,92 ( 2 ) : 99 -104.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部