期刊文献+

洪水频率分布的尾指数估计

下载PDF
导出
摘要 洪灾风险分析中的一项重要内容是关于洪水频率分布的准确描述。文章首先基于指数回归模型给出了矩估计的门限值和样本点分割的选取原理和方法,然后利用MC方法,对Burr(1,1,1)、Frechet(1)、学生-t4等几种常见的极值分布进行模拟以验证模型,最后运用洞庭湖湖区周边四个水文观测站所观察到的洪水流量数据进行了实证分析,得到了洪水分布的尾指数估计。
出处 《统计与决策》 CSSCI 北大核心 2012年第17期9-12,共4页 Statistics & Decision
基金 教育部人文社会科学基金资助项目(09YJA910003)
  • 相关文献

参考文献13

  • 1Beirlant, J., Figueiredo, F., Gomes, M.I.,Vandewalle,B. Improved Re- duced- bias Tail Index and Quantile Estimators[J]. J. Statist. Plann. and Inference, 2008,138.
  • 2Beirlant, J., Goegebeur,Y., Segers, J., Teugels, J. Statistics of Ex- tremes. Theory and Applications[M]. NewYork:Wiley,2004.
  • 3Beirlant, J., Vynckier, P.,Teugels, J.L. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics[J]. J. Amer. Statist. Assoc, 1996,91.
  • 4Beran, J., Schell, D.On Robust Tail Index Estimation. Computational Statistics and Data Analysis,doi:10.1016/j.csda[J].2010.
  • 5Brito, M., Freitas,A.C. Consistent Erstimation of the Tail Index for De- pendent Data[J]. Statistics and Probability Letters, 2010,(80).
  • 6Danielsson,J.Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation[J]. Journal of Multivariate Analysis, 2001,76.
  • 7Dekkers ,A.,de Haans,L. A Moment Estimator for the Index of an Ex- treme-value Distribution[J]. Ann Statist, 1989,17(4).
  • 8Dupuis, D.J. Exceedances o-eer High Thresholds: a Guide to Thresh- old Selection[J]. Extremes,1998,3(1).
  • 9Gomes,M.l., Henriques Rodrigues,L,Vandewalle,B. , Viseu,C. A Heu- ristic Adaptive Choice of the Threshold for Bias-corrected Hill Esti- mators[J]. J. Statist. Comput. And Simulation,2008,78(2).
  • 10Guillou , A.,Hall,P. A Diagnostic for Selecting the Threshold in Ex- treme Analysis[J]. J.R.Statist.Soe. Set B,2001,63.

二级参考文献11

  • 1叶五一,缪柏其,吴振翔.基于Bootstrap方法的VaR计算[J].系统工程学报,2004,19(5):528-531. 被引量:19
  • 2刘国光,王慧敏.沪深股市收益分布尾部特征研究[J].数理统计与管理,2005,24(3):108-112. 被引量:9
  • 3魏宇.金融市场的收益分布与EVT风险测度[J].数量经济技术经济研究,2006,23(4):101-110. 被引量:28
  • 4惠军,缪柏其,叶五一.基于Zipf律的尾部特征分析及VaR计算[J].运筹与管理,2006,15(4):123-126. 被引量:4
  • 5Philippe J. B,and Potters, M.,Price Comparision: Theory of Financial Risks: From Statistical Physics to Risk Management, Cambridge University Press [M], 2000.
  • 6Bali, T. G. An extreme value approach to estimating volatility and value at risk [J]. J. of Business,2003(76(1)), 83-108.
  • 7Mcneil,A. J. Developing scenarious for future extreme losses using the peaks-over-threshold method [C]. Extremes and integrated risk management,UBS Warburg Press,2000.
  • 8Beirlant, J. , Vynckier, P. and Teugels, J. L.(1996). Tail index estimation, Pareto quantile plots, and regression diagnostics[J]. J. Amer. Statist. Assoc. 91, 1659-1667.
  • 9Mattys, G. and Beirlant, J. Extreme quantile estimation for heavy tailed distribution[R]. Technical report, Department of Mathematics, K. U. Leuven. 2001.
  • 10Mattys, G. and Beirlant, J. Estimating the extreme value index and high quantiles mith exponential regression models[J]. Statistica Sinica, 2003(13), 853-880.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部