期刊文献+

极小S-负传递闭包的一个求解方法 被引量:1

One Method of Finding a Minimum Negative S-Transitive Closure
下载PDF
导出
摘要 主要研究了负传递的性质,利用余蕴涵的概念,给出了有限论域上模糊关系的极小S-负传递闭包的一个求解方法,进一步丰富了模糊关系传递性的对偶性质——负传递性的研究。 In this paper, we mainly deal with negative S transitive closure. By using the con cept of coimplication, we propose a method to obtain a minimum S-negatively transitive closure for a fuzzy relation on a finite universe. As a result,the study is enriched for negative transitivity which is a dual to transitivity.
作者 韩红娟
出处 《太原理工大学学报》 CAS 北大核心 2012年第4期527-530,共4页 Journal of Taiyuan University of Technology
关键词 S-负传递性 极小S-负传递闭包 余蕴涵 S-negative transitivity minimum S-negatively transitive closure eoimptication
  • 相关文献

参考文献6

  • 1Fodor J, Roubens M. Fuzzy Preference Modeling and Muhicriteria Decision Support[M]. Dordercht/Boston/London: Kluwer Academic Publishers, 1994.
  • 2Wang X, Kerre E. Reasonable properties for the ordering of fuzzy quantities (II)[J]. Fuzzy Sets and Systems, 2001,118:386- 40.
  • 3Bandler W,Kohout J. Special properties, closures and interiors of crisp and fuzzy relations[J]. Fuzzy Sets and Systems, 1988.26:317-331.
  • 4Delays M. Analyse hierarchique des prefrences et generalisations de la transitivite[J]. Math Sci Hum, 1978,16: 5-27.
  • 5秦效英,韩红娟.模糊关系的S-负传递内部的研究[J].太原理工大学学报,2006,37(4):489-491. 被引量:2
  • 6韩红娟,王绪柱.求极大T-传递内部的新方法[J].模糊系统与数学,2010,24(3):92-97. 被引量:3

二级参考文献6

  • 1彭育威,徐小湛.模糊关系的对偶合成及其在传递性中的应用(英文)[J].模糊系统与数学,2005,19(4):54-59. 被引量:4
  • 2Fodor J, Roubens M. Fuzzy Preference Modeling and MulticriteriaDecision Support[M]. Dordercht/Boston/Londont Kluwer Academic Publishers,1994.
  • 3Wang X, Kerre E. Reasonable properties for the ordering of fuzzy quantities (II)[J]. Fuzzy Sets and Systems, 2001, 118:386-40.
  • 4Banerjee A. Fuzzy choice functions, revealed preference and rationality[J]. Fuzzy Sets and Systems, 1995,70: 31- 43.
  • 5Bandler W, Kohout J. Special properties, closures and interiors of crisp and fuzzy relations[J]. Fuzzy Sets and Systems, 1988,26 : 317 - 331.
  • 6Defays M. Analyse hierarchique des preferences et g6n4ralisations de la transitivite[J]. Math. Sei. Hum. , 1978,16:5 -27.

共引文献3

同被引文献10

  • 1虞雪君.模糊数学方法在地震预测中的应用研究及其实效[J].国际地震动态,2006,27(12):20-23. 被引量:3
  • 2ZADEH L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
  • 3张国清,常显奇.模糊关系分解在军事卫星通信系统模拟中的应用[C]//中国模糊数学与模糊系统委员会第九届年会论文选集.北京:中国系统工程学会,1998:361-363.
  • 4OVCHINNIKOV S.Transitive fuzzy orderings of fuzzy numbers[J].Fuzzy Sets and Systems,1989,30(3):283-295.
  • 5FODOR J C.Traces of fuzzy binary relations[J].Fuzzy Sets and Systems,1992,50(3):331-341.
  • 6FODOR J C,ROUBENS M.Fuzzy preference modeling and multicriteria decision support[M].Dordercht/Boston/London:Kluwer Academic Publishers,1994:2-31.
  • 7KLEMENT E,MESIAR R,PAP E.Triangular norms[M].Dordercht/Boston/London:Kluwer Academic Publishers,2000:4-11.
  • 8BACZY N'SKI M,JAYARAM B.Fuzzy implications[M].Berlin/Heidelberg:Springer-Verlag,2008:55-56.
  • 9韩红娟,王绪柱.求极大T-传递内部的新方法[J].模糊系统与数学,2010,24(3):92-97. 被引量:3
  • 10吴永辉.模糊关系无损连接分解的实现及检验[J].计算机工程与科学,1992,14(4):1-9. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部