期刊文献+

Fe掺杂TiO_2纳米多孔薄膜的制备及光学性质研究 被引量:1

PREPARATION AND OPTICAL PROPERTIES OF THE Fe-DOPED POROUS TIO_2 THIN FILMS
下载PDF
导出
摘要 将Fe掺杂的TiO2-PEG 2 000溶胶旋涂在玻璃基底上,经过退火处理后得到Fe掺杂TiO2纳米多孔薄膜。用场发射扫描电子显微镜、X-射线衍射仪、紫外可见分光光度计和荧光光谱仪分别对样品的形貌、物相结构以及光学特性进行了表征。结果表明:制备的Fe掺杂TiO2纳米多孔薄膜,表面微孔分布均匀,其光吸收边随着Fe掺杂浓度的增加发生了显著红移,当掺杂量为0.15 M时红移量达到最大,约150 nm,说明Fe掺杂可减小TiO2纳米多孔薄膜的光学带隙。此外,样品的光致发光测试结果显示,随着Fe掺杂浓度的逐渐增加,样品的发光强度呈先抑后扬的变化趋势,这说明Fe掺杂浓度对TiO2纳米薄膜光生电子-空穴对的复合几率亦有很大影响,只有当Fe掺杂浓度为0.10 M时,TiO2薄膜的光生载流子复合几率最低。可见,这是一个益于改善TiO2纳米多孔薄膜光电转换性能的优化参数。 Porous Fe-doped TiO2 thin films we prepared on the glass by spin coating of the TiO2 sol including the polyethy- lene glycol 2000( PEG 2000 ) and Fe ions. The morphology, crystalline structurc, and optical properties of the as-grown specimens were characterized by using of the scanning probe microscopy, X-ray diffraction, UV-VIS transmittance spectros- copy, and photoluminescence (PL) measurement, respectively. It was found that the Fe-doped TiO2 thin films exhibited por- ous structure with well-distributed pores, a red shift of the absorption edge occurred with the increase of Fe-doped concentra- tion. And the maximum red shift was 150 nm as the concentration of Fe is O. 15 M, indicating that the Fe doping could re- duce the band-gap of TiO2, Additionally, the recombination rates of the excitation were strong dependant on the doping con- centration of Fe, for instance, the photoluminescence signal of the Fe-doped TiO2 thin films firstly decreases and then increa- ses with the increasing of doping, and reaches its minimum in 0.10 M. Obviously, the optimized parameter would be benefi- cial to improve the photoelectric performances of porous TiO2 thin films.
出处 《真空与低温》 2012年第2期88-93,共6页 Vacuum and Cryogenics
基金 国家自然科学基金(项目批准号:10974155 10774121) 甘肃省高等学校研究生导师科研项目(项目批准号:0801-09)资助课题
关键词 FE掺杂 TiO2多孔薄膜 光学性质 Iron-doping Porous TiO2 thin films Optical property
  • 相关文献

参考文献20

  • 1S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai. Application of titania nanotubes to a dye-sensitized solar cell [ J]. E- lectrochemistry, 2002, 70 (6) : 418 - 420.
  • 2M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa. Formation of titania nanotubes and applications for dye-sensitized solar ceils [J]. J. Electrochem. Soc. , 2003, 150(8) : 488 -493.
  • 3G.K. Mor, K. Shankar, M. Paulose, 0. K. Varghese, C.A. Grimes. Use of highly ordered TiO2 nanotube arrays in dye - sensitized solar cells [J]. Nano Lett. , 2006, 6(2) : 215 -218.
  • 4M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes. Backside illuminated dye - sensitized solarcells based on titania nanotube array electrodes [ J ]. Nanotechnology, 2006, 17 (5) : 1446.
  • 5O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure [ J]. Adv. Mater. , 2003, 15 (7-8) : 624 - 627.
  • 6I G. K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [ J ]. J. Mater. Res. , 2004, 101 (19) : 628 ~ 634.
  • 7M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, K.G. Ong. Unprecedented ultra-high hydrogen gas sensitivity in undo- ped titania nanotubes [ J ]. Nanotechnology, 2006 17 (2) : 398- 402.
  • 8M. Adachi, Y. Murata, M. Harada, Y. Yoshikawa. Formation of titania nanotubes with high photo-catalytic activity [ J ]. Chem. Lett. , 2000, 29 (8) : 942 - 943.
  • 9S.Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu. Highly porous (TiO2-SiO2-TeOE)/A1203 composite nanostruc- tures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process [J]. J. Phys. Chem. B, 2003, 107 (18): 6586 -6589.
  • 10Anpo M. Utilization of TiO2 photocatalysts in green chemistry [J]. Pure Appl. Chem., 2000, 72(7) : 1265 -1270.

二级参考文献41

  • 1周锋,梁开明,王国梁.电场热处理条件下TiO_2薄膜的晶化行为研究[J].物理学报,2005,54(6):2863-2867. 被引量:10
  • 2陈焘,罗崇泰.薄膜应力的研究进展[J].真空与低温,2006,12(2):68-74. 被引量:32
  • 3刘萍,李新勇,王玉新,鞠晓东,陈国华.二氧化钛纳米管阵列的构建及其光电催化性能[J].高等学校化学学报,2006,27(12):2411-2413. 被引量:14
  • 4GONG D, GRIMES C A, VARGHESE O K, et al. Titanium oxide nanotube arrays prepared by anodie oxidation [J] Journal of Materials Research, 2001, 16: 3331-3335.
  • 5ONGK G, VARGHESE O K, MOR G K, et al. Application of finite-difference time domain to dyesensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption[J]. Solar Energy Materials & Solar Cells, 2007, 91: 250-257.
  • 6MOHAPATRA S K, MISRA M, MAHAJAN V K, et al. A novel method for the synthesis of titania nanotubes using sonoeleetrochemical method and its application for photoelectrochemical splitting of water [J]. Journal of Catalysis, 2007, 246: 362-369.
  • 7PEREZ-BLANCO J M, BARBER G D. Ambient atmosphere bonding of titanium foil to a transparent conductive oxide and anodie growth of titanium dioxide nanotubes [J]. Solar Energy Materials Solar Cells, 2008, 92: 997-1002.
  • 8LIU Yan-biao, ZHOU Bao-xue, JING Bai, et al. Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays [J]. Applied Catalysis B: Environmental, 2009, 89: 142-148.
  • 9LAW M, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solar cells [ J ]. Nature Materials, 2005, 4: 455-459.
  • 10PAULOSE M, SHANKAR K, VARGHKESE O K, et al. Backside illuminated dye-sensitized solar ceils based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17: 1446-1448.

共引文献23

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部