期刊文献+

A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode

A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode
原文传递
导出
摘要 Nickel modified graphite electrodes(G/Ni) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol,ethanol,1-propanol and 2-propanol in alkaline solutions.The methods of cyclic voltammetry(CV),chronoamperometry(CA) and impedance spectroscopy(EIS) were employed.In CV studies,the electrochemical response,peak current varied in the order of MeOH > EtOH > 1-PrOH > 2-PrOH.Under the CA regime,a higher catalytic rate constant obtained for methanol oxidation was in agreement with CV measurements.Lower charge transfer resistance was obtained for low carbon alcohols oxidation and significantly higher exchange current density was obtained for methanol oxidation. Nickel modified graphite electrodes (G/Ni) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol, ethanol, 1-propanol and 2-propanol in alkaline solutions. The methods of cyclic voltammetry (CV), ehronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, the electrochemical response, peak current varied in the order of MeOH 〉 EtOH 〉 1-PrOH 〉 2-PrOH. Under the CA regime, a higher catalytic rate constant obtained for methanol oxidation was in agreement with CV measurements. Lower charge transfer resistance was obtained for low carbon alcohols oxidation and significantly higher exchange current density was obtained for methanol oxidation.
出处 《Science China Chemistry》 SCIE EI CAS 2012年第9期1819-1824,共6页 中国科学(化学英文版)
关键词 石墨电极 氧化镍 脂肪族醇 改性 氧化还原过程 加利福尼亚州 催化速率常数 甲醇氧化 alcohols, electrocatalytic, nickel, modified electrode, equivalent circuit
  • 相关文献

参考文献1

二级参考文献36

  • 1Park S. M., Chen N. C., Doddapaneni N., J. Electrochem. Soc., 1995, 142, 40.
  • 2Kim J. W., Park S. M., J. Electrochem. Soc., 1999, 146, 1075.
  • 3Kim J. W., Park S. M., J. Electrochem. Solid State Lett., 2000, 3, 385.
  • 4Amstrong R. D., J. Electroanal. Chem., 1972, 34, 387.
  • 5Amstrong R. D., Henderson M., J. Electroanal. Chem., 1972, 39, 81.
  • 6Seland F., Tunold R., Harrington D. A., Electrochim. Acta, 2006, 51, 3827.
  • 7Danaee I., Jafarian M., Forouzandeh F., Gobal F., Mahjani M. G., Int. J. Hydrogen Energy, 2009, 34, 859.
  • 8Danaee I., Jafarian M., Forouzandeh F., Gobal F., Mahjani M. G., J. Phys. Chem. B, 2008, 112, 15933.
  • 9Zhuang Q. C., Fan X. Y., Xu J. M., Wei G. Z., Dong Q. F., Sun S. G., Chem. Res. Chinese Universities, 2008, 24(4), 511.
  • 10Danaee I., Jafarian M., Forouzandeh F., Gobal F., Mahjani M. G., Electrochim. Acta, 2008, 53, 6602.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部