期刊文献+

非均匀VTI介质切比雪夫傅里叶深度偏移方法 被引量:2

Chebyshev Fourier depth migration operator for heterogeneous VTI media
下载PDF
导出
摘要 傅里叶法是一类重要的单程波偏移方法.同传统的有限差分类方法相比,傅里叶方法不受数值频散和双向分裂误差的影响,但常因精度要求而计算量较大.在各种多项式展开中,切比雪夫展开与单平方根算子的最大偏差是最小的.我们对单平方根算子的切比雪夫展开,得到一种适用于非均匀VTI介质的深度偏移算子,明显降低了计算量且保持了精度.为了进一步提高算子的整体性能,利用模拟退火法对算子中的常系数进行了优化,使三阶算子的最大精确相位角达到60°.Hess模型的偏移结果证实了算法的有效性. The Fourier method is an important one-way wave migration method. Compared with conventional finite- difference approaches, it is free from numerical dispersion and two-way splitting error but is computationally intensive as a result of improving its accuracy. The Chebyshev polynomials have the smallest maximum deviation from the single square root operator than other polynomials. We expand the single square root operator by the Chebyshev polynomials and obtain a depth migration operator for heterogeneous VTI media, reducing obviously the order of the expansion whereas maintaining the imaging precision. To improve the overall performance of the operator, we harness the simulated annealing method to optimize constant coefficients of the operator and raise the maximum accurate phase angle to 60 degree. The Hess model is used to manifest the effectiveness of the operator.
出处 《地球物理学进展》 CSCD 北大核心 2012年第4期1359-1365,共7页 Progress in Geophysics
基金 国家科技重大专项(2011ZX05008-006-30)--深层油气探测关键技术项目(41141720)资助
关键词 单程波 VTI 傅里叶 切比雪夫 模拟退火 One-way wave, VTI, Fourier, Chebyshev, Simulated annealing
  • 相关文献

参考文献28

  • 1Kitchenside P W. 2D anisotropic migration in the space-frequency domain. Journal of Seismic Exploration, 1993, 2: 7-22.
  • 2Nautiyal A, Gray S H, Whitmore N D, et al. Stability versus accuracy for an explicit wavefield extrapolation operator. Geophysics, 1993, 58: 277-283.
  • 3Thorbecke J W, Rietvdd W E A. Optimum extrapolation operators- a comparison. 56th EAGE Extended Abstracts, 1994: P105.
  • 4Zhang J F, Verschuur D J, Wapenaar C P A. Depth migration of shot records in heterogeneous, transversely isotropie media using optimum explicit operators. Geophysical Prospecting, 2001, 49: 287-299.
  • 5Ristow D, Ruhl T. Migration in transversely isotropic media using implicit operators. 67 th SEG Expanded Abstracts,1997: 1699.
  • 6Le Rousseau J H, De Hoop M V. Modeling and imaging with the scalar generalized-screen algorithms in transversely isotropic media with a vertical symmetry axis. Geophysics, 2001, 66(5): 1538 -1550.
  • 7Han Q Y, Wu R S. A one-way dual-domain propagator for scalar qP-waves in VTI media. Geophysics, 2005, 70(2) : D9- D17.
  • 8刘礼农,高红伟,刘洪,张剑锋.三维VTI介质中波动方程深度偏移的最优分裂Fourier方法[J].地球物理学报,2005,48(2):406-414. 被引量:27
  • 9Zhang L B, Hua B L, Calandra H. 3D Fourier finite-difference anisotropic depth migration. 75 th SEG Expanded Abstracts, 2005: 1914.
  • 10Hua B L, Calandra H, Williamson P. 3D common azimuth Fourier finite-difference migration in transversely isotropic media. 76th SEG Expanded Abstracts, 2006: 2387.

二级参考文献105

共引文献145

同被引文献42

  • 1Kumar D,Sen M K, Ferguson R J. Travel time cal- culation and prestack depth migration in tilted trans- versely isotropic media[J]. Geophysics, 2004,69 (1) : 37-44.
  • 2Zhu J M, Mathewson J, Liebelt G. A case study for azimuthally anisotropie prestack depth imaging of an onshore Alaska prospect [ J ]. Geophysics, 2010, 75 (4) : 177-186.
  • 3Keho T, Beydoun W B. Paraxial ray Kirchhoff mi- gration[J]. Geophysics, 2012,77(12) : 1540-1546.
  • 4Gazdag J. Wave equation migration with the phase shift method[J]. Geophysics, 1978, 43 (6): 1342- 1351.
  • 5Stolt R H. Migration by Fourier transform[J]. Geo- physics, 1978,43(1) :23-48.
  • 6Gazdag J, Sguazzero P. Migration of seismic data by phase shift plus interpolation[J]. Geophysics, 1984, 49(2) : 124-131.
  • 7马在田.高阶方程偏移的分裂算法[J].地球物理学报,1983,26(4):377-388.
  • 8Claerbout J F. Imaging the earth's interior[M].USA: Blackewell Scientific Publications, 1985: 217- 218.
  • 9Li Z. Compensating finite-difference errors in 3-D migration and modeling [J]. Geophysics, 1991, 56 (10) : 1650-1660.
  • 10Stoffa P L, Fokkema J T, de Luna F R M, et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4) :410-421.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部