期刊文献+

基于绿灯时间等饱和度的离线Q学习配时优化模型 被引量:3

Optimization Model of the Off-line Q Learning Timing Based on Green Time Equi-saturation
原文传递
导出
摘要 首先对传统的绿灯时间等饱和度概念进行了扩展,提出了分级绿灯时间等饱和度。在此基础上,针对分级绿灯时间等饱和度目标,构造了奖赏函数,建立了定周期和变周期两种模式下的四种离线Q学习配时优化模型。相对于在线Q学习模型,离线Q学习模型更适合交叉口信号配时优化,变周期模式的离线Q学习模型可以获得解的结构、最优解的分布,这是传统配时理论不具备的。算例结果表明,定周期模式下最优解是唯一的。变周期模式下最优解是不唯一的,呈带状,奖赏分级模型比奖赏不分级的最优解更加集中。 In this paper, the traditional concept of saturation of the green time is extended. We proposed a multi-level green time saturation. On this basis, we constructed the reward function for multi-level green time equi-saturation and built up four off-line Q learning models for fixed and variable cycle patterns. The results show that compared to online Q-learning model, off-line Q-learning model is more suitable for traffic signal timing optimization. Q-learning model for variable-cycle mode can obtain the structure of the solution, and the distribution of the optimal solution, which is not available from the traditional timing theory. The numerical examples show that the optimal solution to fixed cycle pattern is unique, and the optimal solution for variable cycle pattern has a belt shape. The optimal solutions to multi-reward level are more concentrated than that to single-reward level.
出处 《系统工程》 CSSCI CSCD 北大核心 2012年第7期117-122,共6页 Systems Engineering
基金 国家自然科学基金资助项目(71071024 70701006) 教育部科研重点项目(145) 湖南省教育厅科研项目(09A003 11C0038) 长沙市科技局重点项目(K1106004-11 K1001010-11) 道路结构与材料交通部重点实验室开放基金资助项目(kfj100206)
关键词 交通控制 配时优化 Q学习 离线 绿灯时间等饱和度 Traffic Control Timing Optimization Q Learning Off-line Green Time Equi-saturation
  • 相关文献

参考文献16

  • 1Oliveira, et al. Reinforcement learning based control of traffic lights in non-stationary environments: A case study in a microscopic simulator [C] // Proceedings of the 4th European Workshop on Multi- Agent Systems (EUMAS06). Lisbon, Portugal, December 2006 :31-42.
  • 2ilva, et al. Adaptive traffic control with reinforce- ment learning[C]//Proceedings of the 4th Workshop on Agents in Traffic and Transportation(at AAMAS 2006 ). Hakodate, JP, 2006 :80- 86.
  • 3Cai C, et al. Adaptive traffic signal control using approximate dynamic programming[J]. Transporta- tion Research Part C, 2009,17 : 456- 474.
  • 4Wiering M, et al. Intelligent traffic light control[Z].Institute of Information and Computing Sciences, Utrecht university, Dutch, technical report UU-CS- 2004-029 ,www. cs. uu. nl.
  • 5Abdulhai, et al. Reinforcement learning for true adaptive traffic signal control [J ]. Journal of Transportation Engineering, 2003 : 278- 285.
  • 6Prashanth L A, et al. Reinforcement learning with function approximation for traffic signal control [J]. IEEE Transactions on Inte|ligent Transportation Systems, 2011,12 (2) :412-421.
  • 7Bingham E. Reinforcement learning in neurofuzzy traffic signal control [J]. European Journal of Operational Research, 2001,131 : 232- 241.
  • 8承向军,常歆识,杨肇夏.基于Q-学习的交通信号控制方法[J].系统工程理论与实践,2006,26(8):136-140. 被引量:14
  • 9高丽颖,陈阳舟,李振龙.基于Agent控制器的单路口信号灯学习控制方法研究[J].交通与计算机,2007,25(5):59-62. 被引量:5
  • 10赵晓华,李振龙,陈阳舟,李云驰.基于混杂系统Q学习最优控制的信号灯控制方法[J].高技术通讯,2007,17(5):498-502. 被引量:5

二级参考文献45

共引文献73

同被引文献34

  • 1承向军,常歆识,杨肇夏.基于Q-学习的交通信号控制方法[J].系统工程理论与实践,2006,26(8):136-140. 被引量:14
  • 2赵晓华,李振龙,陈阳舟,李云驰.基于混杂系统Q学习最优控制的信号灯控制方法[J].高技术通讯,2007,17(5):498-502. 被引量:5
  • 3赵晓华,石建军,李振龙,赵国勇.基于Q-learning和BP神经元网络的交叉口信号灯控制[J].公路交通科技,2007,24(7):99-102. 被引量:9
  • 4全永粜.城市交通控制[M].北京:人民交通出版社,1989.
  • 5Oliveira D,Bazzan A L C, Silva B C, et al.Reinforce- ment learning based control, of traffic lights in non- stationary environments: A case study in a micro- scopic simulator[A].Proceedings of the 4th Europe- an Workshop on Multi-Agent Systems[C]. Lisbon, Portugal: [s.n.] ,2006 : 31- 42.
  • 6Ilva B C, Oliveira D, Bazzan A L C, et al. Adaptive traffic control with reinforcement learning[A]. Pro- ceedings of the 4th Workshop on Agents in Traffic and Transportation [ C]. Hakodate, Janpan: [ s. n.], 2006:80-86.
  • 7Chen C, Chi K W, Benjamin G H. Adaptive traffic signal control using approximate dynamic program- ming[J]. Transportation Research Part C, 2009, 17(5) :456-474.
  • 8Wiering M, Veenen J V, Vreeken J, et al. Intelligent traffic light control, institute of information and compu- ting sciences[R].Dutch: Utrecht University, 2004.
  • 9Abdulhai B, Pringle R, Karakoulas G J. Reinforce- ment learning for true adaptive traffic signal control [J]. Journal of Transportation Engineering, 2003, 129(3) :278-285.
  • 10Prashanth L A, Shalabh B. Reinforcement learning with function approximation for traffic signal con- trol[J].IEEE Transactions on Intelligent Transpor- tation Systems,2011,12(2) :412-421.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部