期刊文献+

基于亮度加权网络空间扩展的图像质量评价方法 被引量:2

An image quality assessment of spatial expansion method based on brightness weighted network
下载PDF
导出
摘要 采用CCIR颁布的亮度加权网络时域频率标准,基于电视学基本原理和数字图像处理方法,将亮度加权网络由时域频率扩展到空间频率,由此建立一个实验平台考察图像空间尺寸对视觉感受的影响.该方法实验结果与视觉感知的图像质量评价结果吻合,其有效性取决于时域亮度加权网络主观实验结果.由于避开了主观评价实验的标准化苛刻要求,因此降低了多通道分解图像质量度量方法的复杂度,有利于图像空间尺寸的质量评价. Based on the basic principles of Television and digital image processing technology, this paper established an experimental platform to explore the impact of the image space size with the visual perception by using brightness weighted network which was published by CCIR. Experiment results were in line with the visual perception of image quality evaluation results, and the validity of experiment results depended on subjective experiment results of brightness weighted network. The strict requirements of subjective evaluation experiment standardization were avoided, so complexity of the multi- channel decomposition image quality measurement method was reduced. In addition, the implement of this method was helpful for the measurement of multi-channel decomposition method.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第4期53-57,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60872162) 安徽大学"211工程"学术创新团队基金资助项目
关键词 亮度加权 空间扩展 多通道分解 视觉感知 图像质量评价 brightness weighted spatial extension muhi-channel decomposition visual perception imagequalityassessment
  • 相关文献

参考文献12

  • 1Karunaseka S A, Kingsbury N G. A distortion measure for blocking artifacts in image based on human visual sensitivity [ J ]. IEEE Transactions on Image Processing, 1995,4 (6) :713-724.
  • 2Yim C, Bovik A C. Quality assessment of de-blocked images [ J ]. IEEE Transactions on Image Processing,2011,20 ( 1 ) :88-98.
  • 3蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226. 被引量:177
  • 4Bovik A C. Perceptual image processing: seeing the future[J]. Proceedings of the IEEE,2010,98 (11):1799- 1803.
  • 5Moorthy A K, Bovik A C. Visual quality assessment algorithms: what does the future hold? [ J ]- International Journal of Multimedia Tools and Applications, Special Issue on Survey Papers in Multimedia by World Experts, 2011,51 (2) :675-696.
  • 6Nadenau M J, Winkler S, Alleysson D, et al. Human vision models for perceptually optimized image processing-A peview[ J]. IEEE Trans Image Process ,2003,12:58-70.
  • 7Watson A B. DCT quantization matrices visually optimized for individual images [ J ]. Proc of SPIE Conf Human Vision, Visual Processing and Digital display (IV), 1993,1913:202-216.
  • 8Watson A B, Yang G Y, Solomon J A, et al. Visibility of wavelet quantization noise [ J ]. IEEE Trans on Image Processing, 1997,6 ( 8 ) : 1168-1175.
  • 9Bradley A P. A wavelet visible difference predictor[ J]. IEEE Trans Image Processing, 1999,8(5 ) :717-730.
  • 10Lai Y K, Kuo C C J. A Harr wavelet approach to compressed image quality measurement [ J ]. Journal of Visual Communication and Image Representation,2000,11 : 7-40.

二级参考文献48

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 4Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 5Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 6Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 7Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.
  • 9Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.
  • 10Hoffmann H, Itagaki T, and Wood D, et al.. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13.

共引文献176

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部