期刊文献+

稳态双极黏滞量子流体力学模型的正解的存在性 被引量:1

The Existence of Positive Solution of the Steady-state Bipolar Viscous Quantum Hydrodynamic Model
下载PDF
导出
摘要 研究一类带有特殊黏滞项的稳态双极流体力学模型正解的存在性。这个模型含有三阶量子修正项和二阶黏滞项。先将原方程组变形为常见的形式。得到原问题的等价问题利用先验估计和Leray-Schauder不动点定理。证明了无论是等熵还是等温条件下,对于所有的电流密度,此模型存在正解。 The weak solution of the steady-state bipolar quantum hydrodynamic equations with special viscous terms is studied. The model equations contain a third-order quantum correction term and second-order viscous term which are derived from a Wigner-Fokker-Planck model. By using prior estimates and Leray-Schauder fixed point theorem, it is shown that, in the case of isothermal or isentropic, the equations have a positive solution for all current density.
出处 《科学技术与工程》 北大核心 2012年第24期5961-5965,5988,共6页 Science Technology and Engineering
关键词 量子流体力学 黏滞 双极 不动点定理 正解 quantum hydrodynamics viscosity bipolar fixed point theorem positive solution
  • 相关文献

参考文献13

  • 1毛磊,管平.一维双极粘滞量子流体力学模型解的存在性[J].东南大学学报(自然科学版),2007,37(6):1132-1136. 被引量:3
  • 2Degond P,Markowich P. A steady state potential flow model for semiconductors. Ann Mat Pura Appl, 1993 ; 165:87-98.
  • 3Markowich P. On steady Euler-Poisson models for semiconductors. Z Angew Math Physik, 1991 ;42(3) :385-407.
  • 4Gamba I M. Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Comm P D E,1992;17(3&4) :225-267.
  • 5Gamba I M. Sharp uniform bounds for steady potential fluid-Poisson systems. Proc Roy Soc Edinb A,1997;127:479-516.
  • 6Gamba I M, Morawetz C. A viscous approximation for a 2D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow. Comm Pure Appl Math, 1996;49:999-1049.
  • 7Gardner C. The quantum hydrodynamic model for semiconductors device. SIMA J Appl Math,1994;54(2) :409-427.
  • 8Cushing J T,Fine A,Goldstein S. Bohmian mechanics and quantum theory: an appraisal. Kluger,Dordrecht, 1996.
  • 9Gasser I,Markowich P,Ringhofer C. Closure conditions for classical and quantum moment hierarchies in the small temperature limit. Transp Theory Stat Phys,1996;25(3):409-423.
  • 10Jungel A. A steady-state quantum Euler-Poisson system for potential flow. Conm Math Phys, 1998 ; 194 (2) :463-479.

二级参考文献8

  • 1Gualdani M, Jungel A. Analysis of the viscous quantum hydrodynamic equations for semiconductors [ J ]. J Appl Math, 2004,15(5) :577 -595,
  • 2Unterreiter A, The thermal equilibrium solution of a generic bipolar hydrodynamic model[J]. Comm Math Phys, 1997,188 (1) :69 -88.
  • 3Gualdani M, Jtingel A. Exponential decay in time of solutions of the viscous quantum hydrodynamic equations[J].Applied Mathematic Letters, 2003,16(8) : 1273 - 1278.
  • 4Arnold A, Carrillo J A, Dhamo E. On the periodic Wigner-Poisson-Fokker-Planck system[ J]. J Math Anal Appl, 2002, 275( 1 ) :263 -276,
  • 5Gardner C. The quantum hydrodynamic model for semiconductors device [ J ]. SIMA J Appl Math, 1994,54 (2) :409 -427.
  • 6Natalini R. The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations [J]. J Math Anal Appl, 1996,198 ( 81 ) : 262 - 281.
  • 7Gasser I, Jungel A. The quantum hydrodynamic model for semiconductors in thermal equilibrium[ J ]. Z Angew Math Phys, 1997,48( 1 ) :45 - 59.
  • 8Groger K. A W^1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations [J]. Math Ann,1981,283(4) :679 -687.

共引文献2

同被引文献18

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部