期刊文献+

体外连续传代培养脐带间充质干细胞染色体核型的稳定性 被引量:3

Karyotype stability of human umbilical cord mesenchymal stem cells during culture in vitro
原文传递
导出
摘要 目的分析不同代次人脐带间充质干细胞(umbilical cord mesenchymal stem cells,UC-MSCs)的染色体核型,初步评价UC-MSCs在体外连续传代培养过程中染色体结构的稳定性。方法采用胶原酶消化法分离UC-MSCs,贴壁培养传代,通过细胞形态、免疫表型及多向分化潜能等生物学特性进行鉴定,利用G显带分析第3、5、7代细胞的染色体核型。结果染色体核型分析显示,第3、5、7代UC-MSCs为正常二倍体核型,G显带未见染色体结构异常。UC-MSCs呈成纤维样形态生长,高表达CD73、CD90、CD105,不表达CD34、CD45、CD40、CD80、CD86、CD154、HLA-DR;在特定的体外诱导条件下可以向骨、脂肪、软骨分化。结论 UC-MSCs在体外连续传代培养7代以内染色体结构稳定,为临床应用UC-MSCs的安全性提供了遗传学方面的实验依据。 Objective To analyze the karyotype of human umbilical cord mesenchymal stem cells (UC-MSCs) and to evaluate the stability of chromosome structure of UC-MSCs during continuous passaging in vitro. Methods The UC-MSCs were isolated by digestion with collagenase and subcuhured in vitro. They were characterized by morphology, immunophe- notype and multi-directional differentiation potential. Furthermore, the karyotype of passage 3 ( P3 ), P5 and P7 UC-MSCs was analyzed by G-banding technique. Results The karyotype analysis of P3, P5 and P7 UC-MSCs showed a normal dip- loid karyotype with 46 chromosomes and there were no abnormal changes in chromosome structure. UC-MSCs exhibited fibroblastic morphology and were CD73, CD90, and CD105 positive and CD34, CD45, CD40, CDS0, CD86, CD154, and HLA-DR negative. Under special induction conditions, UC-MSCs could differentiate into osteocytes, adipocytes and chondro- cytes, Conclusion When cultured for 7 passages in vitro, UC-MSCs can maintain stable chromosome structure, which pro- vides an experimental basis for the safety of UC-MSCs eytotherapy.
出处 《军事医学》 CAS CSCD 北大核心 2012年第8期599-602,共4页 Military Medical Sciences
基金 国家"863"计划资助项目(2011AA020114) 国家自然科学基金资助项目(81070435)
关键词 间充质干细胞 脐带 核型 细胞增殖 连续传代 mesenchymal stem cells umbilical cord karyotype cell proliferation serial passage
  • 相关文献

参考文献1

共引文献6

同被引文献33

  • 1Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Ce11,2013, 153(6): 1194 -1217.
  • 2Signer RA, Morrison SJ. Mechanisms that regulate stem cell ag- ing and life span[ J]. Cell Stem Ce11,2013, 12(2) : 152 -165.
  • 3Campisi J. Aging, cellular senescence, and cancer[ J]. Annu Rev Physiol,2013, 75:685-705.
  • 4Moskalev AA, Shaposhnikov MV, Plyusnina EN, et al. The role of DNA damage and repair in aging through the prism of Koch- like criteria[J]. Ageing Res Rev,2013, 12(2) : 661 -684.
  • 5Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, ge- nome stability, and aging[J]. Ce11,2005, 120(4) : 497 -512.
  • 6Nijnik A, Woodbine L, Marchetti C, et al. DNA repair is limit- ing for haematopoietic stem cells during ageing [ J ]. Nature, 2007,447 (7145 ) : 686 - 690.
  • 7Cheng H, Qiu L, Ma J, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts [ J ]. Mol Biol Rep,2011,38(8) : 5161 -5168.
  • 8Efimenko A, Dzhoyashvili N, Kalinina N, et al. Adipose- derived mesenchymal stromal cells from aged patients with coro- nary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic po- tential[J]. Stem Cells Transl Med,2014,3( 1 ) : 32 -41.
  • 9Wahlestedt M, Pronk C J, Bryder D. Concise review: hematopoi- etic stem cell aging and the prospects for rejuvenation [ J ]. Stem Cells Transl Med,2015, 4(2) : 186 - 194.
  • 10Richardson C, Yan S, Vestal CG. Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells [ J 1. Int J Mol Sci,2015, 16(2) : 2366 -2385.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部