期刊文献+

基于优化N-FINDR算法的高光谱遥感影像矿物识别 被引量:3

Mineral Identification Based on the Optimized N-FINDR Algorithm of Hyperspectral Remote Sensing Images
下载PDF
导出
摘要 为了提高矿物识别的精度,利用高光谱遥感数据,运用线性光谱混合模型(LSMM)和优化的N-FINDR算法对Cuprite地区的AVIRIS和HYMAP数据进行端元提取,并进行矿物精细分类识别。实验表明:线性光谱混合模型易于操作,优化的端元提取算法优于传统交互式端元提取,可用于矿物成分的精细识别。 In order to improve the accuracy of mineral identification,use the Cuprite regional AVIRIS and HYMAP hyperspectral data to extract the mineral end members based on LSMM and a optimized N-FINDR algorithm,and accurately identify minerals.Experiments show that:Linear spectral mixture model is easy to operate,the optimized N-FINDR algorithm is superior to traditional interactive end member extraction method,recommend for fine identification of the mineral composition.
出处 《金属矿山》 CAS 北大核心 2012年第8期84-87,91,共5页 Metal Mine
基金 国家自然科学基金项目(编号:41071273) 高等学校博士学科点专项科研基金项目(编号:20090095110002) 中央高校基本科研业务费专项资金项目(编号:2010QNA21) 国土环境与灾害监测国家测绘局重点实验室开放基金项目(编号:LEDM2011B07) 江苏省高校优势学科建设工程项目(编号:SA1102)
关键词 高光谱遥感 矿物识别 线性光谱混合模型 端元提取 Hyperspectral remote sensing Mineral identification Linear spectral mixture model End member extraction
  • 相关文献

参考文献10

  • 1张杰林,曹代勇.成像光谱数据挖掘与矿物填图技术研究[J].遥感技术与应用,2002,17(5):259-263. 被引量:9
  • 2甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘,2003,10(2):445-454. 被引量:105
  • 3张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 4L Huali, I,iangpei Z. A hybrid automatic end member extraction al- gorithm based on local window[ J]. IEEE Transactions on G,osci- ence and Remote Sensing,201 1,49( 11 ) :4223-4238.
  • 5Harsanyi J C, Chang C I. Hype-pe-tral image classification and dimensionaliiy reduction: An orthogonal subspaee proje-.tion ap- pmaeh[J].IEEE Transacrtions on Geoscience and Remote Sens- ing, 1994,32(4) :779-785.
  • 6Heinz D C ,Chang C I. Fully constrained least squares linear spec- tral mixture analysis method for material quantification in hyper- spectra| imagery[ J]. IEEE Transactions on Geoscience and Re- mote Sensing,2001,39(3) :529-545.
  • 7Rogge D M, Rivard B. herative spertal unmixing for optimizing per- pixel endmember sets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44 ( 12 ) : 3725-3736.
  • 8Chang C I, Plaza A. A fast iterative algorithm for impIemention of pixel purity index [ J]. IEEE Transactions on Geoscience and Re-mote Sensing,2006,3 ( 1 ) :63-67.
  • 9Winter M E. N-FINDR : An algorithm for fast autonomous spectral end member determination in hyperspectral data[ C ]// SPIE Con- ference Imaging Spectrometry. Pasadena: Jet Propulsion Laborato- ry, 1999:266-275.
  • 10Chan T H, Ma W K, et al. A simplex volume maximization frame- work for hyperspectral end member extraction[ J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2011,49 ( 11 ) : 4177- 4193.

二级参考文献35

  • 1王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 2郭小方.成像光谱遥感地质研究的理论基础和数据处理技术研究,博士论文[M].,1998..
  • 3KRUSE F A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California[J]. Remote Sens Environ, 1988,24:31-51.
  • 4CROWLEY J K, BRICKEY D W, ROWAM L C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images[J]. Remote Sens Environ, 1989,29:121-134.
  • 5dE JONG S M. Imaging spectrometry for monitoring tree damage caused by volcanic activity in the Long Valley Caldera, California[J]. ITC Journal, 1998, 1: 1-10.
  • 6LONGHI I, SCAVETTI M, CHIARI R, et al. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectral in the 0.4~2.5 μm interval: a tool for hyperspectral data interpretation[J]. Int J Remote Sensing, 2001,22(18):3763-3782.
  • 7BAUGH W M, KRUSE F A, WILLIAM W, et al. Quantitative geochemical mapping of ammonium minerals in the Southern Cedar Mountains, Nevada, using the airborne visible/infrared imaging spectrometer(AVIRIS)[J].Remote Sens Environ, 1998, 65:292-308.
  • 8FENSTERMAKER L K, MILLER J R. Identification of Fluvially redistributed mill tailings using high spectral resolution aircraft data[J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(8):989-995.
  • 9BEN-DOR E, KRUSE F A. Surface mineral mapping of Makhtesh Ramon Negev, Israel using GER 63 channel scanner data[J]. Int J Renote sensing, 1995,16(8):3529-3553.
  • 10CROSTA A P, SABINE C, TARANIK J V. Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data[J]. Remote Sens Environ, 1998,65:309-319.

共引文献145

同被引文献37

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部