期刊文献+

Cu_(64)Zr_(36)合金非晶剪切带形成的分子动力学模拟 被引量:2

Molecular Dynamics Simulation of Deformation of Shear Bands in Alloy Glass Metal Cu_(64)Zr_(36)
原文传递
导出
摘要 用分子动力学(MD)模拟方法研究在轴向压缩下,冷却速率、应变率、环境温度、裂缝对Cu64Zr36二元非晶合金力学性能的影响。在模拟中,采用EAM势函数表述原子间的相互作用。计算结果表明:非晶的弹性模量和抗压强度都比晶体试样大一倍多,而当应变≥15%时两种试样的流动应力几乎相等;冷却速率缓慢得到的非晶试样由于原子发生重组变疏松,产生剪切带,而冷却速率较快得到的试样则没有发生重组;试样的弹性模量、抗压强度和流动应力对应变率变化很不敏感;随着环境温度的升高,流动应力、抗压强度和弹性模量降低;有初始裂纹的试样剪切带集中,从裂纹尖端开始,与加载方向呈45o方向扩展。 The dynamic mechanical properties of a model binary Cu 64 Zr 36 metallic glass under axial compression were obtained by molecular dynamics(MD) simulation.Cooling rate,strain rate,surrounding temperature and initial crack were investigated.In the simulation,EAM potential function was adopted to describe the relationship between atoms.Results show that the elastic modulus and the compressive strength of the metallic glass are twice more than those of the crystal metal.A main shear is generated in the specimen prepared at a slow cooling rate because of the rearrangement of atoms,while in the specimen prepared at fast cooling rate no atom rearrangement takes place.The elastic modulus,falling stress and flow stress are non-sensitive to strain rate.However,they decrease with increasing of surrounding temperature.The specimens with initial cracks show highly localized shear bands which are generated from the crack tip and propagate at the angle of 45o away from the loading direction.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第8期1409-1412,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(10932008 10902090) 西北工业大学111项目(B07050)
关键词 非晶合金 分子动力学 剪切带 metallic glass molecular dynamics simulation shear bands
  • 相关文献

参考文献14

  • 1Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater[J], 2007, 55 4067.
  • 2Liu X J, Chen G L, Hou H Y. Acta Materialia[J], 2008, 56: 2760.
  • 3Sun Y L, Shen J. Journal of Non-Crystalline Solids[J], 2009, 355:1557.
  • 4Hofmann D C et aL Nature[J], 2008, 451:1085.
  • 5Li Qikai, Li Mo. Applied Physics Letters[J], 2006, 88:24.
  • 6Li Qikai, Li Mo. Physical Review B[J], 2007, 75(9): 1758.
  • 7Bailey N P. Jakob Schiotz et al. Physical Review B[J], 2006, 73(6): 1280.
  • 8Shi Y F, Falk M L, Phys ReviwLett[J], 2005, 95:095 502.
  • 9Foiles S M, Bakes M I, Daw S W. Physical Review B[J], 1986, 33:7983.
  • 10Plimpton S J. LAMMPS[M]. Sandia National Lab, 2007.

同被引文献17

  • 1贺自强,王新林,全白云,张羊换,赵小龙,王鑫.非晶态合金的局域剪切变形与断裂机制[J].材料科学与工程学报,2007,25(1):132-138. 被引量:10
  • 2Zhan Bin(詹斌),Lan Jinle(兰金叻),Lin Yuanhua(林元华).稀有金属材料与工程[J],2013,42(6):54.
  • 3Yang Jie(杨杰),Wang Wan(王莞),Ou Yangkun(欧阳馄)et al.功能材料[J],2009,1(40):135.
  • 4Feng Bo, Li Zhixin, Zhang Xing. Thin Solid Films[J], 2009, 517:2803.
  • 5Damian Terris, Karl Joulaina, Denis Lemonnier et al. International Journal of Thermal Sciences[J], 2009, 48:1467.
  • 6Kuang C Lin, Angela Violi. International Journal of Heat and Fluid Flow[J], 2010, 31: 236.
  • 7Ng T Y, Yeo J J, Liu Z S. Journal of Non-Crystalline Solids[J], 2012, 358:1350.
  • 8Wu Guoqiang(吴国强),Kong Xiangren(孔宪仁),Sun Zhaowei(孙兆伟).物理学报[J],2006,55(1):1205.
  • 9Feng Bo, Li Zhixin, Zhang Xing. Thin Solid Films[J],2009, 517:2803.
  • 10Tang Qiheng. Molecular Physics[J], 2004, 102(18): 1959.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部