期刊文献+

纳米碳化钽对SPS烧结钨显微结构的影响 被引量:3

Effect of Nano-TaC on Microstructure of Sintered Tungsten by SPS
原文传递
导出
摘要 通过放电等离子体烧结(SPS)方法在1700℃下制备纳米碳化钽(TaC)弥散强化钨块,研究钨粉原始粉末粒度大小和添加碳化钽的量对烧结钨块微观组织的影响。结果表明:不同粒度钨粉(30nm、200nm和3μm)制备的钨块,烧结后的粒径随原始粉末粒度的增大而增大,3μm钨粉烧结后的晶粒平均直径为22.19μm;同一种粒度钨粉(如200nm)中分别添加质量分数为0%,1%,2%和4%的碳化钽,烧结后钨晶粒的平均直径随碳化钽添加量的增加而减小,加入量为4%时晶粒平均直径为5.91μm。通过SEM分析可以看出,碳化钽在烧结钨中是以球形状态存在的。从断口可以看出,纯钨烧结体为穿晶断裂,加入碳化钽的钨烧结体为晶间断裂。 Dispersion strengthened tungsten with nano-tantalum carbide(TaC) was prepared by Spark Plasma Sintering(SPS) process at 1700 ℃for 1 min.The results show that the grain size of tungsten will be larger if the particle size of tungsten powder is larger.When the particle size of tungsten powder is 3 μm,the grain size of tungsten is 22.19 μm.And then,with the increase of TaC content,the grain size of tungsten will be finer.When the particle size of tungsten powder is 200 nm and the content of TaC is 4%,the grain size of sintered tungsten is about 5.91 μm.It also can be seen that TaC is spherical,it exists at grain boundaries of the sintered tungsten.Some transgranular fracture can be seen in fracture surface of pure tungsten by SPS,but it is mainly intergranular fracture in fracture surface of dispersion strengthened tungsten with nano-tantalum carbide.
机构地区 北京科技大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第8期1431-1434,共4页 Rare Metal Materials and Engineering
基金 国家磁约束核聚变能研究专项(2010GB109000)
关键词 碳化钽 SPS 显微结构 TaC tungsten SPS microstructure
  • 相关文献

参考文献8

  • 1张小锋,刘维良,郭双全,姜林文.聚变堆中面向等离子体材料的研究进展[J].科技创新导报,2010,7(3):118-119. 被引量:16
  • 2Roedig M, Kuehnlein W, Linke J et al. Fusion Engineering and Design[J], 2002, 61-62:135.
  • 3Bolt H, Barabash V, Krauss Wet al. Journal of Nuclear Materials[J], 2004, 329-333(Part 1): 66.
  • 4Staid I, Akiba M, Vieider Get al. J Nucl Mater[J], 1998, 253-263:160.
  • 5Kim Hwan-Cheol, Yoon Jin-Kook, Doh Jung-Mann et al. Materials Science and Engineering[J], 2006, 435-436:717.
  • 6Chen Y J, Li J B, Wei Q M. Mater Lett[J], 2002, 56:279.
  • 7Kurishita H, Kuwabara T, Hasegawa Met al. Journal of Nuclear Materials[J], 2005, 343: 318.
  • 8Bernhard W, Dieter S W, Benno L. International Journal of Refractory Metals and Hard Materials[J], 2002, 20(1): 51.

二级参考文献4

共引文献15

同被引文献32

  • 1陈勇,吴玉程,于福文,陈俊凌.La_2O_3弥散强化钨合金的组织性能研究[J].稀有金属材料与工程,2007,36(5):822-824. 被引量:26
  • 2Fahim N F. Surface and Coatings Technology[J], 2008, 202(9): 1696.
  • 3Kurishita H, Amano Y, Kobayashi S et al. Journal of Nuclear Materials[J], 2007, 367(1-4): 1453.
  • 4Kurishita H, Matsuo S, Arakawa H et al. Journal of Nuclear Materials[J], 2010, 398(1-3): 87.
  • 5Zhang Taiquan, Wang Yujin, Zhou Yu et al. Materials Science and Engineering: A[J], 2009, 512(1-2): 19.
  • 6Zheng L, Schmitz G, Meng Yet al. Critical Reviews in Solid State and Materials Sciences[J], 2012, 37(3): 181.
  • 7ZhengXin(郑欣),BaiRun(白润),WangDonghui(王东辉)eta1.稀有金属材料与工程[J],2011,40(10):187.
  • 81WangSong(王松),XieMing(谢明).稀有金属材料与工程[J],2012,4l(s2):145.
  • 9Battabyal M, Schaeublin R, Spaetig P et al. Materials Science and Engineering A[J], 2012, 538:53.
  • 10MaYao(马矗),ZhouZhangjian(周张健),TanJun(谈军)eta1.稀有金属材料与工程[J]j2011,40(1):4O.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部