期刊文献+

螺旋桨初生空化湍流的多相流数值模拟 被引量:3

Multi-phase Numerical Simulation of Propeller Turbulent Cavitation Inception Flow
下载PDF
导出
摘要 同时采用修正剪切应力输运(SST)湍流模型和Baseline雷诺应力模型(RSM)求取了E779A螺旋桨在无空化状态和初生空化状态下的梢涡运动轨迹,分析了涡核最小压力系数、湍动能、轴向速度分量和涡核半径沿运动轨迹的变化,并从模拟得到的梢涡卷曲起始和梢涡涡束的角度阐述了梢涡形成机理.空化模型采用改进Sauer模型,考虑了非凝结性气核质量分数、体积分数和气泡初始半径以及湍流脉动的影响,并针对轻度、中度和重度空化面积进行了可信性校验.当空化数σ>初生空化数σi时,叶梢截面压力系数分布相对不再改变的判定准则来确定.涡核中心位于螺旋线垂向截面上最小压力点,涡核边界由湍流涡频率峰值决定.数值模拟结果表明,RSM模拟梢涡路径较修正SST湍流模型稍长、局部梢涡空化范围略大、叶梢最小压力系数和轴向速度分量要小,涡核湍动能分布更为合理.但两者模拟得到的涡核运动轨迹几乎重合,并且初生空化状态下的涡核运动轨迹、最小压力系数和轴向速度分布均与各自无空化状态下非常接近,表明了初生空化状态判定的正确性和改进数值模型对梢涡运动轨迹模拟的适用性. Both of the modified SST turbulence model and BSL Reynolds stress model were used to predict the tip vortex trajectories of E779A propeller under non-cavitation and cavitation inception conditions. The vortex core's minimum pressure coefficient, turbulent kinetic energy, axial velocity component and vortex size distribution related to the trajectory were analyzed at the same time, and the flow physics of tip vortex was presented from the flow field with tip vortex crimp beginning and streamtube formation. The im- proved Sauer cavitation model accounting for the effects of non-condensable gas's mass and volume fraction and the bubble initial radius on cavitation inception and the effect of turbulence on phase-change pressure threshold was adopted along with validation of the cavity pattern and area of E779A propeller under light- ly, moderately and heavily cavitation levels. The cavitation inception index was determined by the rule of "when σ〉σi, the pressure coefficient of the blade tip section is relative unaltered". The minimum pressure in vortex core on perpendicular cross plane was used to locate the vortex center, and vortex core bound was determined by the peak of turbulent eddy frequency. The results show that a slightly longer tip vortex trajectory appears with the BSL RSM model than the modified SST model as well as a litter bigger local tip vortex cavitation extension and more reasonable turbulent kinetic energy distribution, while the minimum pressure coefficient and axial velocity in blade tip region are smaller. On the other hand, the tip vortex trajectories captured by the two models almost superpose along with nearly the same tip vortex trajecto- ries, minimum pressure coefficient and axial velocity distribution between non-cavitation and cavitation in- ception condition of the two models respectively, which proves that the determination of cavitation incep tion by the rule is reasonable, and the adopted modified numerical models are appropriate to simulate the tip vortex trajectory.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第8期1254-1262,共9页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51009144)
关键词 螺旋桨 梢涡 空化初生 空化模型 湍流模型 propeller tip vortex cavitation inception cavitation model turbulence model
  • 相关文献

参考文献3

二级参考文献30

  • 1Kawanami Y, Kato H. Mechanism and control of cloud cavitation[J]. Journal of Fluids Engineering. 1997, 119(8) :788 - 794.
  • 2Zhou L J, Wang Z W. Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG κ-ε model[J]. Journal of Fluids Engineering, 2008.130(1): 1-7.
  • 3Wang G, Ostoja-Starzewski M. Large eddy simuiatlon of a sheet/cloud cavitation on a NACA0015 hydrofoil [J]. Applied Mathematical Modeling, 2007. 31 (3):417 - 447.
  • 4Wu Jiongyang, Wang Guoyu, Wei Shyy. Time-dependent turbulent eavitating flow computations with interracial transport and filter based models[J]. International Journal for Numerical Methods for Fluids, 2005, 49: 739 - 761.
  • 5Yakhot V, Orzag S A. Renormalization group analysis of turbulence: base theory[J]. J Scient Comput, 1986, 1:3-11.
  • 6Singhat A K, Athavale M M. Mathematical basis and validation of the full cavitation model [J]. Journal of Fluids Engineering, 2002,124 :617 - 624.
  • 7Johansen S T, Wu J, Wei Shyy. Filter based unsteady RANS computations[J]. Int J Heat and Fluid Flow, 2004,25(1) :10 - 21.
  • 8张博,王国玉,黄彪,等.栅中翼型空化水动力特性的实验研究[C]//2008年热机气动热力学与流体机械学术会议论文集.天津:中国工程热物理学会,2008.
  • 9杨琼方,王永生,张志宏.螺旋桨梢涡空化初生和空化斗的数值求解[c]//第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集.北京:海洋出版社,2011:467-474.
  • 10Singhal A K, Athavale M M, Li Huiying, et al. Mathe- matical basis and validation of the full cavitation model [J]. ASME Journal of Fluids Engineering, 2002, 124(4) :617 - 624.

共引文献29

同被引文献16

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部