期刊文献+

基于Map/Reduce集群上的模式空间划分的序列模式挖掘 被引量:1

Sequential Pattern Mining Based on Pattern Space Division in Map/Reduce Cluster
下载PDF
导出
摘要 通过模式空间划分将基于Map/Reduce处理数据集与候选序列模式集的多对多的对应关系的问题转化为处理数据集与以频繁1-序列为基的各子模式空间的多对多的对应关系问题,大大缩小了中间结果键值对集合的规模,避免了由于组合爆炸导致的单一Map节点的瓶颈问题.通过三轮的Map/Reduce任务,实现了模式空间和过滤规则的建立,并在此基础上实现了各子模式空间上独立地进行序列模式的挖掘.通过充分利用整个模式空间的全局特征及各子模式空间的个性特征,设计了优化的非递归挖掘算法,减少了前缀投影库构造次数及对构造的投影库的扫描次数,从而提高了挖掘阶段的效率. By means of pattern space division and based on Map/Reduce, the problem of processing the many-to-many corresponding relationship between the data set and the patterns set is converted to the problem of processing the many-to-many corresponding relationship between the data subsets and the pattern subspaces associated with the length-1 sequential patterns. Thus, the size of the intermediate key/value pairs set is reduced so dramatically that the problem of single Map node bottleneck which results from combinatorial explosion of candidate pattern space is avoided. Over three rounds of Map/Reduce tasks, the pattern space is constructed and divided, the filtering rules is set up and used, father more, the sequential pattern mining is realized in each pattern subspace independently. By making the best of both the universal trait of the whole pattern space and the individuality of pattern subspace, the optimized non-recursive algorithm is designed and implemented to improve the efficiency of mining phase by avoid unnecessary constructing of prefix projected databases and scanning of the constructed prefix projected databases.
作者 刘骞 陈明
出处 《微电子学与计算机》 CSCD 北大核心 2012年第9期149-151,156,共4页 Microelectronics & Computer
关键词 Map/Reduce模式空间划分 序列模式挖掘 云计算 Map/Reduce pattern space division sequential pattern mining cloud computing
  • 相关文献

参考文献4

  • 1Sanjay Ghemawat, Howard Gobioff, Shun-Tak Le- ung. The Google file system[C] // Proceedings of the 19th Symposium on Operating Systems Principles. Lake George, New York: IEEE, 2003:29-43.
  • 2Dean Jeffrey, Ghemawat Sanjay. Map/reduce: simpli- fied data processing on large clusters[J]. Communica- tions of the ACM, 2008, 51(1) : 107-113.
  • 3Google Inc. Protocol Buffers: Google's data inter- change forrnat[EB/OL]. (2010) [2012-02-05]. http: //eode. google, com/p/protobuf/Aceessed 26.01.10.
  • 4McCreadie R. Map/Reduce indexing strategies: Stud- ying scalability and efficiency[J]. Information process- ing and Management (2011),2010.

同被引文献3

  • 1Pei J,Han J,Mortazavi-Asl B,et al.Mining sequential patterns by pattern-growth:the PrefixSpan approach[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(11):1424-1440.
  • 2JEFFREYD,SANJAYG.Map/Reduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 3袁和金.视频目标轨迹分析的改进PrefixSpan方法[J].计算机工程与应用,2011,47(32):7-10. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部