期刊文献+

基于差异性激活方法的改进微粒群算法

Improved Particle Swarm Optimization Algorithms Based on Diversity-activation Approach
下载PDF
导出
摘要 针对标准微粒群优化算法的惯性权重系数采用固定或线性递减的方式无法有效解决粒子陷入局部最优解的问题及可能出现的停滞现象,引入以差异性为基础的激活方法对微粒群算法进行改进.在每次迭代时算法可以动态调整惯性权重参数及粒子的活性,从而促进粒子收敛至全局最优解.对6种典型函数的实验结果表明,引入本文的激活方法后,改善了微粒群算法的开发和探索能力,并提高了其收敛速度及精度,其中以非线性惯性权值递减策略的微粒群算法最为明显. In the classical particle swarm optimization algorithm, a constant or linearly decreasing inertia weight was used for solving the optimization problem, but it could not solve the phenomenon of stagnation. A diversity-based inertia weight strategy and the activation of swarm in the particle swarm optimization were proposed. In each iteration process, the inertia weight and activation of swarm were changed dynamically, which benefits to the algorithm converging quickly to global optimal solution. According to the experimental results using six typical functions, the activation approach for the particle swarm optimization improves exploitation and exploration ability, but still keeps a rapid convergence and fine precision, and the nonlinear strategy for decreasing inertia weight of the particle swarm optimization is the most obvious.
作者 李劲 王华
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第9期1384-1388,共5页 Journal of Beijing University of Technology
基金 云南省自然科学基金资助项目(2009ZC012X) 云南省教育厅科学基金资助项目(04J264D)
关键词 微粒群优化算法 全局优化 激活方法 进化计算 particle swarm optimization algorithms global optimization activation approach evolutionary algorithms
  • 相关文献

参考文献15

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C ] // Proceedings of IEEE International Conference on Neural Networks. Piscataway, N J: IEEE Press, 1995: 1942-1948.
  • 2KENNEDY J, EBERHART R C, SHI Y. Swarm intelligence [ M ]. San Francisco: Morgan Kaufmann Publishers, 2001: 23-29.
  • 3PARSOPOULOS K E, PAPAGEORGIOU E I, GROUMPOS P P, et al. A first study of fuzzy cognitive maps learning using particle swarm optimization [ C ] // Proceedings of 1EEE Congress on Evolutionary Computation. Canbella: IEEE Press, 2003 : 1440-1447.
  • 4VENAYAGAMOORTHY G K, DOCTOR S. Navigation of mobile sensors using PSO and embedded PSO in a iuzzy logic controller [ C ] //Proceedings of the 39th 1EEE IAS Annual Meeting on Industry Applications. Seattle: IEEE Press, 2004: 1200-1206.
  • 5刘双全,邹立峰,张海龙,王金文.基于改进粒子群的水火电力系统发电调度[J].水电能源科学,2010,28(7):153-156. 被引量:7
  • 6RAMAWEERA A, HALGARNUGE S K. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240-255.
  • 7NAKAGAWA N, ISHIGAME A, YASUDA K. Particle swarm optimization with velocity control [ J ]. IEEE Transactions on Electrical and Electronic Engineering, 2009, 4(1) : 130-132.
  • 8LI J, XIAO X P. Multi-swarm and multi-best particleswarm optimization[C] ffProe of 7th IEEE World Congress on Intelligent Control and Automation. Chongqing: IEEE Press, 2008: 6281-6286.
  • 9高鹰,姚振坚,谢胜利.基于种群密度的粒子群优化算法[J].系统工程与电子技术,2006,28(6):922-924. 被引量:7
  • 10LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3) : 281-295.

二级参考文献37

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部