期刊文献+

MIMO-OFDMA时变信道和载波频偏联合估计

Joint Time-varying Channel and Carrier Frequency Offsets Estimation for MIMO-OFDMA Wireless Systems
下载PDF
导出
摘要 针对MIMO-OFDMA上行无线通信系统,提出一种基于随机集理论的多用户时变信道和载波频率偏移联合估计算法.该算法基于随机集合理论,利用一个有限随机集合来表示和描述系统中实时动态变化的接入用户状态、多径信道的冲激响应,以及每个无线接入用户对应的载波频率偏移量;然后,利用贝叶斯最优估计理论,给出在随机集模型下MIMO-OFDMA上行无线系统中信道冲激响应和载波频率偏移的最优估计表达式;最后,利用粒子滤波算法逼近求解该随机集模型下的贝叶斯最优估计问题.仿真实验结果表明,在MIMO-OFDMA上行无线系统中接入用户数未知且动态变化等复杂情况下,该算法仍然可以实现对时变信道冲激响应和载波频偏的有效估计. For the uplink MIMO-OFDMA wireless systems, a joint multi-user channel and cartier frequency offsets (CFOs) estima- tion algorithm is proposed based on the random-set theory. In the algorithm, the states of the active users, the multi-path channels, and the CFOs are described by a finite random set. Then the problem of joint channel and CFOs estimation is thus constructed by the theory of Bayesian optimal estimation, then the optimal estimations of channel and CFOs are obtained and solved by using the particle filtering algorithm. Simulation results show that, the proposed algorithm can effectively estimate the time-varying channel and CFOs, even when the number of active uses is time-varying and unknown in the MIMO-OFDMA uplink systems.
作者 景源
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第9期2064-2067,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61101115)资助 辽宁大学青年科研基金项目(2010LDQN02)资助
关键词 多输入多输出(MIMO) 正交频分多址(OFDMA) 信道估计 随机集合 贝叶斯估计 MIMO OFDMA channel estimation random set Bayesian estimation
  • 相关文献

参考文献9

  • 1Jung M C, Kwak J S, Kim H S, et al. Adaptive subcarrier, bit, and power allocation algorithm for MIMO-OFDMA system[ C]. In Proc. of IEEE VTC 2004-Spring, Milan, Italy, May, 2004.
  • 2Zhao P, Kuang L, Lu J. Carder frequency offset estimation using extended Kalman filter in uplink OFDMA systems [ C ]. In Proc.IEEE ICC'2006, Istanbul, Turkey, June,2006.
  • 3Sezginer S, Bianchi P. Asymptotically efficient reduced-complexity frequency offset estimation for uplink MIMO-OFDMA systems [ C]. In Proc. IEEE ICC'07, Glasgow, Scotland, August, 2007.
  • 4Kim K J, Pun M, Reid T, et al. Joint frequency offset and channel estimation for UL-MIMO-OFDMA systems using the parallel Schmidt Kalman filters[ C]. In Proe. IEEE ICASSP'2007, Hawai' I, USA, May,2007.
  • 5Mahler R P S. Multitarget Bayes filtering via first-order multi-target moments[ J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(4) : 1152-1178.
  • 6Doucet A,Freitas N,Murphy K,et al. Rao-blackwellised particle filtering for dynamic Bayesian networks[ C]. The 16th Annual Conference on Uncertainty in Artificial Intelligence ,San Francisco,CA,2000.
  • 7Biglieri E, Lops M. Multiuser detection in a dynamic environment (Part Ⅰ) : user identification and data detection [ J]. IEEE Trans. on Information Theory, 2007, 53(9) : 3158-3170.
  • 8Angelosante D, Biglieri E, Lops M. Sequential estimation of multipath MIMO-OFDM channels [ J ]. IEEE Transactions on Signal Processing, 2009, 57(8) : 3167-3181.
  • 9Haykin S, Huber K, Chen Z. Bayesian sequential state estimation for MIMO wireless communications[J]. Proceedings of the IEEE, 2004, 92(3): 439-455.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部