期刊文献+

完全椭圆积分K(r)之由三角函数给出的界及其应用(英文) 被引量:1

Estimates for Complete Elliptic Integral K(r) by Trigonometric Functions with Applications
下载PDF
导出
摘要 文章获得了第一类完全椭圆积分K(r)的由正弦和余弦函数给出的上下界与Hübner上界函数的一种估计。而且,运用这些结果获得了在拟共形理论等领域中有着重要地位的Hersch-Pfluger偏差函数φK(r)的一类估计。 In this paper, several lower and upper bounds of the complete elliptic mtegratot the first kind K(r) are obtained in terms of trigonometric functions sine and cosines, as well as those of Hiibner's upper bound function. New estimates for the Hersch-Puger distortion function φk(r) are presented according to the experimental results.
出处 《浙江理工大学学报(自然科学版)》 2012年第5期722-726,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 supported by the NSF of China(11171307)
关键词 估计不等式 完全椭圆积分 Hersch-Pfluger偏差函数 拟共形理论 estimates complete elliptic integrals Hersch-Puger distortion function quasiconformal mappings
  • 相关文献

参考文献15

  • 1Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas,Graphs and Mathematical Ta-bles[M]. New York: Dover,1965 : 1-33.
  • 2Qiu S L,Vuorinen M. Handbook of Complex Analysis: Geometric Function Theory[M]. Amsterdam: Elsevier Sci B V, 2005: 621-659.
  • 3Anderson G D,Vamanamurthy M K,Vuorinen M. Functional inequalities for hypergeonmetric functions and complete elliptic integrals [J]. SIAM J Math Anal, 1992, 23(2): 512-524.
  • 4Anderson G D,Vamanamurthy M K,Vuorinen M. Gonformal Invariants,Inequalities, and Wuasiconformal Maps[M]. New York: John Wiley & Sons, 1997: 48-107.
  • 5Borwein J M. Ibrwein P B. Pi and the AGM[M]. New York: John Wiley & Sons, 1987: 1-10.
  • 6Anderson G I),Qiu S L,Vamanamurthy M K,et al. Generzlized elliptic integrals and modular equations [J]. Pacific J Math, 2000,192(1): 1-37.
  • 7Alzer H,Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. J Comput Ap-pl Math, 2004,172(2): 289-312.
  • 8Baricz A. Turan type inequalities for generalized complete elliptic integrals[J]. Math Z, 2007, 256(4) : 895-911.
  • 9Andras S,Baricz A. Bounds for complete elliptic integral of the first kind [J]. Expo Math, 2010, 28(4): 357-364.
  • 10Guo B N,Qi F. Some bounds for the complete elliptic integrals of the first and second kinds[J]. Math Inequal Appl, 2001,14(2): 323-334.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部