期刊文献+

谓词模态逻辑到对应物理论的翻译 被引量:2

On the Translation from Quantified Modal Logic into the Counterpart Theory
下载PDF
导出
摘要 对应物理论(counterpart theory)是一阶逻辑的一种理论.Lewis利用谓词模态逻辑到对应物理论的翻译来研究谓词模态逻辑的性质,但是Lewis的翻译存在把不可满足的公式翻译为可满足公式的情况.针对这个问题,提出了一种扩展语义的谓词模态逻辑,建立了扩展语义后谓词模态逻辑模型与对应物理论模型的一一对应关系,并在此基础上建立了谓词模态逻辑到对应物理论的语义忠实语义满翻译(faithful and full translation),其可确保将谓词模态逻辑的可满足公式和不可满足公式分别翻译为对应物理论的可满足公式和不可满足公式.由对应物理论是可靠的、完备的一阶逻辑的理论且语义忠实语义满翻译保持可靠性和完备性,进一步证明了扩展语义的谓词模态逻辑也是可靠和完备的. The counterpart theory is a theory of first-order logic. Lewis interprets modal claims by using a translation from quantified modal logic into the counterpart theory. However, Lewis's translation does not preserve the unsatisfiability of formulas. In this paper, an extended semantics for quantified modal logic is introduced, and the corresponding connection between models of the quantified modal logic and models of the counterpart theory is given. Based on the semantics, a faithful and full translation from quantified modal logic to the counterpart theory, which preserves the satisfiability and the unsatisfiability of formulas, is also established. Furthermore, since the counterpart theory is sound and complete, and the soundness and the completeness are preserved by the faithful and full translation, the quantified modal logic is also sound and complete.
出处 《软件学报》 EI CSCD 北大核心 2012年第9期2323-2335,共13页 Journal of Software
基金 国家自然科学基金(60573010 60663001 61103169) 广西自然科学基金(2011GXNSFA018159)
关键词 谓词模态逻辑 对应物理论 语义忠实语义满翻译 quantified modal logic counterpart theory faithful and full translation
  • 相关文献

参考文献1

二级参考文献15

  • 1Ohlbach H, Nonnengart A, de Rijke M, Gabbay D. Encoding two-valued non classical logics in classical logic//Robinson A, Voronkov A eds. Handbook of Automated Reasoning. Amsterdam, Netherlands: Elsevier, 2001:1403-1486.
  • 2van Benthem J. Modal correspondence theory [Ph.D. dissertation]. University of Amsterdam, Netherlands, 1976.
  • 3Kurtonina N, de Rijke M. Bisimulation for temporal logic. Journal of Logic, Language and Information, 1997, 6 (4) : 403-425.
  • 4Kurtonina N, de Rijke M. Expressive of concept expression in first order description logics. Artificial Intelligence, 1999, 107(2): 303-333.
  • 5Areces C, de Rijke M. From description to hybrid logics, and back//Wolter F et al eds. Advanced in Modal Logic. Stanford: GSLI Publications, 2002, 3:17-36.
  • 6Baader F. A formal definition for the expressive power of terminological knowledge representation languages. Journal of Logic and Computation, 1996, 6(1): 33-54.
  • 7Borgida A. On the relative expressiveness of description logics and predicate logics. Artificial Intelligence, 1996, 82(1-2): 353-367.
  • 8de Nivelle H, de Rijke M. Deciding the guarded fragments by resolution. Journal of Symbolic Computation, 2003, 35(1): 21-58.
  • 9Ohlbach H. Semantics based translation methods for modal logics. Journal of Logic and Computation, 1991, 1(5) : 691- 746.
  • 10Ohlbach H, Schmidt R. Functional translation and second order frame properties of modal logics. Journal of Logic and Computation, 1997, 7(5): 581-603.

共引文献3

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部