期刊文献+

基于网格中心点的点在多边形内的高效判定 被引量:8

Point-in-Polygon Test Method Based on Center Points of Grid
下载PDF
导出
摘要 提出一种基于均匀网格的点在多边形内的高效判定算法.它首先建立均匀网格,并从左至右依次计算每个网格单元中心点的位置属性.每个单元中心点的位置属性直接依据其左侧邻接单元已知位置属性的中心点快速获得.在判定点的位置时,确定被测点所在单元,并依据该单元中心点的位置属性判定被测点的位置属性.由于预处理和判定时均利用邻近点的已知位置属性来确定未知点位置属性,可以很好地进行局部化的计算.因此,新方法比现有方法快很多,并且其预处理时间复杂度也由同类网格算法的O(N3/2)下降为O(N).同时,新方法可以统一处理含有自相交及重叠边的非流形多边形.实验结果表明,相比于其他基于均匀网格的方法,新方法可将预处理的速度提高几倍,将判断计算的速度提高十几到几十倍.其速度甚至优于具有该问题最低判定计算时间复杂度O(logN)的基于凸剖分的判定算法. The paper proposes an efficient point-in-polygon test method based on uniform grids. In preprocessing,it constructs uniform grids and processes the center points in a sequence to determine whether they are inside the polygon, when the center points with known inclusion properties are used to quickly determine their adjacent center points. When performing an inclusion query, it first finds the cell that contains the query point and then produces a line segment from the query point to the cell's center point and counts the edges crossed by the line segment for determination. As both the preprocessing and the inclusion tests make use of known information to determine the center points or query points, the computation can run locally for acceleration and the new method can run much faster than existing methods. In most cases, it can reduce the preprocessing time complexity from O(N3/2) to O(N) for the methods based on grids, where N is the number of the polygon edges. Meanwhile, the new method can efficiently treat the non-manifold polygons with self intersection or overlapping edges. Experimental results show that compared with other similar methods based on uni form grids, the new algorithm can speed up the preprocessing by several times and the query computation by one or several dozens of times, and can move faster than the method by convex decomposition, which has the lowest complexity O(logN) for point-in- polygon tests.
作者 李静 王文成
出处 《软件学报》 EI CSCD 北大核心 2012年第9期2481-2488,共8页 Journal of Software
基金 国家自然科学基金(60873182 60773026 60833007)
关键词 多边形 点包容性检测 网格 中心点 polygon point-in-polygon test grid center point
  • 相关文献

参考文献14

  • 1de Berg M, Cheong O, van Kreveld M, Overmars M. Computational Geometry: Algorithms and Applications. 3rd ed., Berlin, Heidelberg: Springer-Verlag, 2008. [doi: 10.1007/978-3-540-77974-2].
  • 2Foley JD, van Dam A, Feiner SK, Hughes JF. Computer Graphics--Principles and Practice. 2nd ed., Reading: Addison-Wesley, 1990.
  • 3Haines E. Point in polygon strategies. In: Heckbert P, ed. Proc. of the Graphics Gems IV. New York: Academic Press, 1994.24-46.
  • 4Preparata FP, Shamos MI. Computational Geometry: An Introduction. 2nd ed., New York: Springer-Verlag, 1985.
  • 5Hormann K, Agathos A. The point in polygon problem for arbitrary polygons. Computational Geometry: Theory and Applications, 2001,20(3):131-144. [doi: 10.1016/S0925-7721(01)00012-8].
  • 6Feito FR, Torres JC, Urena A. Orientation, simplicity, and inclusion test for planar polygons. Computers & Graphics, 1995,19(4): 595-600. [doi: 10.1016/0097-8493(95)00037-D].
  • 7Jim6nez JJ, Feito FR, Segura RJ. Robust and optimized algorithms for the point-in-polygon inclusion test without pre-processing. Computer Graphics Forum, 2009,28(8):2264-2274. [doi: 10.1111/j. 1467-8659.2009.01481.x].
  • 8Zalik B, Clapworthy GJ. A universal trapezoidation algorithm for planar polygons. Computers & Graphics, 1999,23(3):353-363. [doi: 10.1016/S0097-8493(99)00044-8].
  • 9Zalik B, Kolingerova I. A cell-based point-in-polygon algorithm suitable for large sets of points. Computers & Geosciences, 2001, 27(10): 1135-1145. [doi: 10.1016/S0098-3004(01)00037-1].
  • 10Yang S, Yong JH, Sun J, Gu H, Paul JC. A point-in-polygon method based on a quasi-closest point. Computers & Geosciences, 2010,36(2):205-213. [doi: 10.1016/j.cageo.2009.06.008].

同被引文献53

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部