期刊文献+

灰度不均的弱边缘血管影像的水平集分割方法 被引量:13

Vessel Segmentation Under Non-Uniform Illumination:A Level Set Approach
下载PDF
导出
摘要 针对血管影像中灰度不均和弱边缘情况下已有水平集模型不能正确分割血管问题,提出一种耦合了血管影像的几何信息、边缘信息和区域信息的水平集分割方法.首先,采用Hessian矩阵的各向异性性对血管状目标进行识别,对原始影像数据进行多尺度滤波;然后采用拉普拉斯算子零交叉点的快速边缘积分方法将边缘信息嵌入能量泛函中,构建一种基于结构、边缘和区域信息的水平集分割方法.相比于单一依靠影像边缘信息或区域信息模型及其改进模型,该方法在分割严重灰度不均匀的血管造影影像上能够准确提取血管,并精确定位血管边缘. In this paper, a new level set segementation model is proposed and is couplea wlm me geometric information, the edge information and the region information. The new level set segementation model is aimed at a vessel segmentation in a non-uniform image with weak object boundaries. First, a multiscaled filter with a Hessian matrix, which has a anisotropic character, is used to identify the direction of vessels. Second, the edge information is embed into a energy functional by a fast edge integral method with a laplacian zero crossing algorithm. A new level set segmentation model based on information of geometric structure, edge and region is constructed by this method. This new model can segment vessels exactly on grayscale uneven images. Compared to GAC CV segmentation model and other improved models based on CV model, the method in this paper has a better accuracy and robustness.
出处 《软件学报》 EI CSCD 北大核心 2012年第9期2489-2499,共11页 Journal of Software
基金 国家自然科学基金项目(81000651) 江苏省自然科学基金项目(BK2010236) 江苏省基础研究计划(BK2011331) 中国科学院知识创新工程重要方向项目(KGCX-YW-909-1) 苏州市技术专项(ZXS201003)
关键词 血管分割 灰度不均 弱边缘 水平集 边缘积分 几何结构 各向异性 管状滤波器 vessel segmentation intensity inhomogeneity weak edges level set edge integration geometrical structure anisotropic tubular filter
  • 相关文献

参考文献19

  • 1Kimmel R, Bruckstein AM. Regularized Laplacian zero crossings as optimal edge integrators. Int'l Journal of Computer Vision, 2003,53(3):225-243. [doi: 10.1023/A:1023030907417].
  • 2陈波,赖剑煌,马建华.一种耦合的活动轮廓模型及其在图像分割中的应用[J].中国图象图形学报,2007,12(3):444-449. 被引量:2
  • 3Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2):158-175. [doi: 10.1109/34.368173].
  • 4Caselles V. Geometric models for active contours. In: Proc. of the Int'l Conf. on Image Processing. 1995.9-12. [doi: 10.1109/ICIP. 1995.537567].
  • 5Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577-685. [doi: 10.1002/cpa.3160420503].
  • 6Chan TF, Vese LA. Active contours without edges. IEEE Trans. on Image Processing, 2001,10(2):266-277. [doi: 10.1109/83. 902291 ].
  • 7Tsai A, Yezzi AJr, Wells WlII, Tempany C, Tucker D, Fan A, Crrimson WE, Willsky A. Model-Based curve evolution technique for image segmentation. In: Proe. of the 2001 IEEE Conf. on Computer Society. 2001. 1-463-1-468. [doi: 10.1109/CVPR.2001. 990511 ].
  • 8Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the bhattacharyya gradient flow. IEEE Trans. on Image Processing, 2007,16(11):2787-2801. [doi: 10.1109/TIP.2007.908073].
  • 9Chunming L, Chiu-Yen K, Gore JC, Zhaohua D. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. on Image Processing, 2008,17(10): 1940-1949. [doi: 10.1109/TIP.2008.2002304].
  • 10Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans. on Image Processing, 2008,17(11):2029-2039. [doi: 10.1109/TIP.2008.2004611].

二级参考文献25

  • 1刘欣悦,黄廉卿.利用多分辨率直方图特征分类数字X光乳腺图像[J].光学精密工程,2006,14(2):327-332. 被引量:10
  • 2MINTZ G S, NISSEN S E, ANDERSON W D, et al.. ACC clinical expert consensus document on standards for the acquisition, measurement and reporting of intravascular ultrasound studies., a report of the American College of Cardiology task force on clinical expert consensus doeuments[J]. J. Am. Coll. Cardiol. , 2001,37(5) : 1478-1492.
  • 3LUO Z, WANG Y, WANG W. Estimating coronary artery lumen area with optimization-based contour detection [J]. IEEETrans. Med. Imag., 2003,22(4):564-566.
  • 4NOBLE J A, BOUKERROUI D. Ultrasound image segmentation: a survey[J]. IEEE Trans. Med. Imag. , 2006, 25(8) :987-1009.
  • 5GIL D, HERNANDEZ A, RODRIGUEZ O, et al.. Statistical strategy for anisotropic adventitia modelling in IVUS[J]. IEEE Trans. IVied. Imag. , 2006,25(6):768-778.
  • 6CARDINAL M R, MEUNIER J, SOULEZ G, et al.. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions[J]. IEEE Trans. Med. Imag. ,2006,25(5):590-601.
  • 7BOVENKAMP E G P, DIJKSTRA J, BOSCH J G, et al.. Multi-agent segmentation of IVUS images[J]. Pattern Recognit. , 2004,37(4) : 647-663.
  • 8GIANNOGLOU G D, CHATZIZISIS Y S, KOUTKIAS V, et al.. A novel active contour model for fully automated segmentation of intravascular ultrasound images[J]. Computers in Biology and Medicine, 2007,37 (9):1292- 1302.
  • 9SANZ-REQUENA R, MORATAL D, GARCIA-SANCHEZ D R, et al. . Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies[J]. Computerized Medical Imaging and Graphics, 2007,31(2):71-80.
  • 10DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image[J]. IEEE Trans. Image Process. ,2005,14(12) :2091-2106.

共引文献20

同被引文献130

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 3张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 4SIEGEL R,NAISHADHAM D,JEMAL A.Cancer statistics,2012[J].CA:a Cancer Journal for Clinicians,2012,62(1):10-29.
  • 5HIGGINS M J,BASELGA J.Targeted therapies in breast cancer[J].Journal of Clinical Investigation,2011,121(10):3797-3803.
  • 6KASS M,WITKIN A,TERZOPOULOS D.Snakes:active contour.models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 7MUMFORD D,SHAH J.Boundary detection by minimizing functio-nals[C]//Proc of IEEE Conference on Computer Vision Pattern Rec-ognition.1985.
  • 8MUMFORD DjSHAH J.Optimal approximations by piecewise smoothfunctions and associated variational problems[J].Communicationson Pureand Applied Mathematics,1989,42(5):577-685.
  • 9MALLADI R,SETHIAN J,VEMURI B.Shape modeling with frontpropagation:a level set approach[J].IEEE Trans on Pattern A-nalysis and Machine Intelligence,1995,17(2):158-175.
  • 10CHAN T,YESE L.Active contours without edges[J].IEEE Transon Image Processing,2001,10(2):266-277.

引证文献13

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部