期刊文献+

结合组稀疏效应和多核学习的图像标注 被引量:8

Image Annotation by the Multiple Kernel Learning with Group Sparsity Effect
下载PDF
导出
摘要 图像中存在的纹理、颜色和形状等异构视觉特征,在表示特定高层语义时所起作用的重要程度不同.为了在图像标注过程中更加有效地利用这些异构特征,提出了一种基于组稀疏(group sparsity)的多核学习方法(multiplekernel learning with group sparsity,简称MKLGS),为不同图像语义选择不同的组群特征.MKLGS先将包含多种异构特征的非线性图像数据映射到一个希尔伯特空间,然后利用希尔伯特空间中的核函数以及组LASSO(groupLASSO)对每个图像类别选择最具区别性特征的集合,最终训练得到分类模型对图像进行标注.通过与目前其他图像标注算法进行对比,实验结果表明,基于组稀疏的多核学习方法在图像标注中能取得很好的效果. Since different kinds of heterogeneous features (such as color, shape and texture) in image shave different intrinsic discriminative power for image understanding, this paper proposes a multiple kernel learning with group sparsity (MKLGS) to select groups of discriminative features for image annotation to effectively utilize those heterogeneous visual features. Given each image label, the MKLGS method embeds the nonlinearity image data with discriminative features into a Hilbert space, and then utilizes the kernel function in the Hilbert space and group LASSO to select groups of discriminative features. Finally, a classification model can be trained for image annotation. In comparison to other image annotation algorithms, experiments show that the proposed MKLGS for imageannotation achieves a better performance.
出处 《软件学报》 EI CSCD 北大核心 2012年第9期2500-2509,共10页 Journal of Software
基金 国家自然科学基金(61070068 60833006) 国家重点基础研究发展计划(973)(2010CB327904) 核高基项目(2010ZX01042-002-003)
关键词 组LASSO 组稀疏 多核学习 特征选择 图像标注 group LASSO group sparsity multiple kernel learning feature selection image annotation
  • 相关文献

参考文献28

  • 1Yang J, Yu K, Gong Y, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In: Prec. of the Conf. on Computer Vision and Pattern Recognition. Florida: IEEE Computer Society Press, 2009. 1794-1801. [doi: 10.1109/ CVPRW.2009.5206757].
  • 2Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227. [doi: 10.1109/TPAMI.2008.79].
  • 3Yang JC, Wright J, Huang T, Ma Y. Image super-resolution as sparse representation of raw image patches. In: Proc. of the Conf. on Computer Vision and Pattern Recognition. Anchorage: IEEE Computer Society Press, 2008. 1-8. [doi: 10.1109/CVPR.2008. 4587647].
  • 4Yang JC, Tang H, Ma Y, Huang T. Face hallucination via sparse coding. In: Proc. of the Int'l Conf. on Image Processing. San Diego: IEEE Signal Processing Society Press, 2008. 1264-1267. [doi: 10.1109/ICIP.2008.4711992].
  • 5Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society-- Series B (Methodological), 2006,68(1):49-67. [doi: 10.1111/j.1467-9868.2005.00532.x].
  • 6Cao L, Luo J, Liang F, Huang T. Heterogeneous feature machines for visual recognition. In: Proc. of the 2009 IEEE Int'l ConL on Computer Vision. 2009. 1095-1102. [doi: 10.1109%2fICCV.2009.5459401].
  • 7Wu F, Yuan Y, Zhuang YT. Heterogeneous feature selection by group LASSO with logistic regression. In: Proc. of the 2010 Int'l Conf. on Multimedia. Firenze: ACM Press, 2010. 983-986. [doi: 10.1145/1873951.1874129].
  • 8Meier L, Van de Geer S, Bfihlmann P. The group LASSO for logistic regression. Journal of the Royal Statistical Society-Series B (Methodological), 2008,70(1):53-71. [doi: 10.1111/j. 1467-9868.2007.00627.x].
  • 9Zhang S, Huang J, Huang Y, Yu Y, Li H, Metaxas D. Automatic image annotation using group sparsity. In: Proc. of the 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE Computer Society Press, 2010. 3312-3319. [doi: 10.1109/CVPR.2010.5540036].
  • 10Wu F, Han YH, Tian Q, Zhuang YT. Multi-Label boosting for image annotation by structural grouping sparsity. In: Proc. of the 2010 Int'l Conf. on Multimedia. Firenze: ACM Press, 2010. 15-24. [doi: 10.1145/1873951.1873957].

同被引文献48

  • 1Lowe D. Object recognition from local scale-invariant features[CJ II Proceedings of International Conference on Computer Vi?sion. Kerkyra ? IEEE Computer Society Press ,1999: 1150-1157.
  • 2Li F eifei , Perona P. A Bayesian hierarchical model for learning natural scene categories[CJ II Proceedings IEEE Computer Vi?sion and Pattern Recognition. San Diego: IEEE Computer Society Press,2005 :524-531.
  • 3Grauman K, Darrell T. Efficient image matching with distribu?tions of local invariant features[CJ IIProceedings IEEE Comput?er Vision and Pattern Recognition. San Diego: IEEE Computer Society Press ,2005 :627 -634.
  • 4Zhang Hao, Berg A, Maire M, et al. SVM-KNN: discriminative nearest neighbor classification for visual category recognition[CJ IIProceedings IEEE Computer Vision and Pattern Recogni?tion. New York: IEEE Computer Society Press,2006:2126-2136.
  • 5Lazebnik S, Schmid C, PonceJ. Beyond hags of features: spatial pyramid matching for recognizing natural scene categories[CJ II Proceedings IEEE Computer Vision and Pattern Recognition. New York: IEEE Computer Society Press ,2006 :2169-2178.
  • 6Bosch A ,Zisserman A. Representing shape with a spatial pyramid kernel[CJ I I International Conference on Image and Video Re?trieval. Amesterdan : Association for Computing Machinery, 2007 : 401-408.
  • 7ShiJianbo , MalikJ. Normalized cuts and image segmentation[J] . IEEE Transactions on Pattern Analysis and Machine Intel?ligence ,2000 ,22 (8) :888 -905.
  • 8Ng A,Jordan M,Weiss Y. On spectral clustering: analysis and an algorithm[CJ I I Advances in Neural Information Processing Systems. Vancouver: MIT Press ,2002 :849-856.
  • 9Comaniciu D. An algorithm for data-driven bandwidth selection[J] . IEEE Trans Pattern Analysis Machine Intelligent, 2003 ,25 (2) :281-288.
  • 10Sarle W. Neural network FAQ[EB/OLJ.1997[2012-11- 20J. ftp://ftp. sas. com Ipub IneuraVFAQ. html.

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部