期刊文献+

新型聚丙烯催化剂的聚合性能 被引量:4

Performance of novel catalyst for propylene polymerization
下载PDF
导出
摘要 研究了以新型含镁化合物为载体的HQ型聚丙烯高效球形催化剂的液相本体聚合,考察了聚合温度,n(Al)/n(Ti),n(Si)/n(Ti),外给电子体种类,氢气用量对催化剂催化性能的影响。结果表明:该催化剂具有良好的氢调敏感性和立体定向性。最适宜的聚合条件:反应温度为70℃,n(Al)/n(Ti)为481.0,外给电子体为甲基环己基二甲氧基硅烷,n(Si)/n(Ti)为19.2。在此条件下,HQ型催化剂的活性达34.0 kg/g,聚丙烯等规指数为97.9%以上。 The authors studied liquid phase bulk polymerization of propylene in the presence of a high efficiency spherical HQ catalyst with novel magnesium compounds as carrier. The effects of the polymerization temperature, molar ratio of Al to Ti and Si to Ti, type of external electron donor and Hi amount on the catalyst's performance were explored. The results show that the catalyst has excellent sensibility to hydrogen response and high stereospecifieity. The optimal polymerization conditions included polymerization temperature of 70℃, molar ratio of Al to Ti of 481.0, molar ratio of Si to Ti of 19.2 and taking methyl eyclohexyl dimethoxysilane as external electron donor. Under such conditions, the catalyst's activity reaches 34.0 kg/g and the isotaetieity of the polypropylene product exceeds 97.9%.
出处 《合成树脂及塑料》 CAS 北大核心 2012年第5期1-4,共4页 China Synthetic Resin and Plastics
关键词 聚丙烯 齐格勒-纳塔催化剂 聚合 载体 外给电子体 polypropylene Ziegler-Natta catalyst polymerization carrier external electron donor
  • 相关文献

参考文献9

二级参考文献25

  • 1李明和,胡友良.Lewis碱对丙烯聚合高效载体催化体系的调变作用[J].石油化工,1994,23(1):54-62. 被引量:7
  • 2吕立新.2003—2004年聚烯烃新品种的进展[J].石油化工,2005,34(7):605-611. 被引量:7
  • 3张启兴.丙烯聚合负载型高效催化剂及给电子体作用机理[J].合成树脂及塑料,1997,14(1):53-57. 被引量:9
  • 4Kissin Y V, Mirabella F M, Meverden C C. Multi - Center Nature of Heterogeneous Ziegler - Natta Catalysts : TREF Confirmation. J Polym Sci,PartA:Polym Chem, 2005, 43:4 351-4 362
  • 5Kissin Y V. Multi - Center Nature of Titanium - Based Ziegler - Natta Catalysts: Comparison of Ethylene and Propylene Polymerization Reactions. J Polym Sci, Part A : Polym Chem, 2003, 41 : 1 745 - 1 758
  • 6Kissin Y V, Chadwick J C, Mingozzi I, et al. Isoselectivity Distri- bution of Isospecific Centers in Supported Titanium - Based Ziegler - Natta Catalysts. Macromol Chem Phys, 2006, 207:1 344 - 1 350
  • 7Kissin Y V, Ohnishi R , Konakazawa T. Propylene Polymerization with Titanium - Based Ziegler - Natta Catalysts: Effects of Tempe rature and Modifiers on Molecular Weight, Molecular .Weight Distribution and Stereospecificity. Macromol Chem Phys, 2004, 205:284-301
  • 8Kissin Y V, Rishina L A. Hydrogen Effects in Propylene Polymerization Reactions with Titanium - Based Ziegler - Natta Catalysts I. Chemical Mechanism of Catalyst Activation. J Polym Sci,Part A:Polym Chem, 2002, 40:1 353 - 1 365
  • 9Kissin Y V, Rishina L A, Vizen E I. Hydrogen Effects in Propylene Polymerization Reactions with Titanium - Based Ziegler - Natta Catalysts Ⅱ. Mechanis'm of the Chain Transfer Reaction. J Polym Sci,Part A:Polym Chem, 2002, 40:1 899 - 1 911
  • 10Liu B, Murayama N, Terano M. Transformation of Polymerization Sites into Hydrogen Dissociation Sites on Propylene Polymerization Catalyst Induced by the Reaction with Aluminium Alkyl Cocatalyst. Ind Eng Chem Res, 2005, 44:2 382-2 388

共引文献49

同被引文献19

  • 1黄素梅,吴旦,马紫峰.丙烯聚合催化剂的实验室考评方法[J].工业催化,2006,14(5):30-33. 被引量:3
  • 2王静,罗正鸿,郑屹,曹志凯,温少桦.非稳态操作下的聚丙烯液相环管反应器中微观模拟[J].石油学报(石油加工),2007,23(3):70-74. 被引量:2
  • 3ZHANG H X, LEE Y J, PARK J R, et al. Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler-Natta catalyst: Effect of a cocatalyst and hydrogen[J]. Journal of Applied Polymer Science, 2011, 120(1): 101-108.
  • 4ZHANG H X, LEE Y J, PARK J R, et al. Control of molecular weight distribution for polypropylene obtained by commercial Ziegler-Natta catalyst: Effect of temperature [J]. Polymer Bulletin, 2011, 67 ( 8 ) : 1519-1527.
  • 5FERREIRA L C, MELO P A, CROSSETTI G L, et al. Polymerization of ethylene by (a-diimine) nickel catalyst and statistical analysis of the effects of reaction conditions[J]. Polymer Engineering and Science, 2010, 50(9): 1797-1808.
  • 6BOX G E P, WILSON K B. On the experimental attainment of optimum conditions [J]. Journal of the Royal Statistical Society Series B (Methodological), 1951, 13(1): 1-45.
  • 7NEGI L M, JAGGI M, TALEGAONKAR S. A logical approach to optimize the nanostructured lipid carrier system of irinotecan : Efficient hybrid design methodology [J ]. Nanoteehnology, 2013, 24 ( 1 ): 15104-15114.
  • 8CAN M Y, KAYA Y, ALGUR O F. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris [J]. Bioresource Technology, 2006, 97(14): 1761-1765.
  • 9SINGH K P, RAI P, PANDEY P, et al. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box- Behnken design[J]. Environmental Science and Pollution Research, 2012, 19(1) : 113-127.
  • 10IMANDI S B, BANDARU V R, SOMALANKA S R, et al. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design[J]. Enzyme and Microbial Technology, 2007, 40(5): 1367-1372.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部