期刊文献+

广义轮型完全多部图的生成树数 被引量:1

THE NUMBER OF SPANNING TREES IN GENERALIZED COMPLETE MULTIPARTITE GRAPHS OF WHEEL-TYPE
下载PDF
导出
摘要 证明了如下结论:设KWk,n是由轮图集W={Wn1,Wn2,…,Wnk}生成的n阶广义轮型完全k-部图,其中n={n1,n2,…,nk},n=|n|=n1+n2+…+nk,1≤k≤n.那么KWk,n的生成树数目为t(KWk,n)=n2k-2∏ki=1αni-1i+βni-1i-2n-ni+1,其中αi=(di+d2i-4)/2,βi=(di-d2i-4)/2,di=n-ni+3. The following is proved in this paper. Let Kk,n^W be a generalized complete k-partitegraph of order n spanned by the wheel set W={Wn,Wn2,…,Wnk}wheren n={n,n2,…,nk},n=|n|=n1+n2+n2+…nk,1≤k≤n.then the number of spanning trees in Kk,n^W is t(Kk,n^W)=n^2k-2∏i=1^kai^ni-1+βi^ni-1-2/n-ni+1, and ai=(di+√di^2-4)/2,βi-(di-√di^2-4)/2,di=n-ni+3.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期335-340,共6页 Journal of Beijing Normal University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目 北京师范大学重点学科基金资助项目
关键词 简单连通图 完全图 k-部图 connected simple graph k-partite graph complete graph tree
  • 相关文献

参考文献12

  • 1Bondy J A, Murty U S R. Graph theory with applications [M]. [S. 1. ] : The Macmilan Press LTD, 1976.
  • 2Cayley G A. A theorem on trees[J]. Quart J Math, 1889 (23):276.
  • 3Sedlacek J. Lucas numbers in graphs theory [M] // Mqthematics (Geometry and Graph Theory) (Cheeh.). [S. 1. ] Univ. Karlova, Prague, 1970 : 111-- 115.
  • 4SedlacekJ. On the skeleton of a graph or digraph[M]// Combinatorial structures and their applications, Guy R, Hanani M, Saver N, et al. New york.. Gordon and Breach, 1970:387-391.
  • 5Baron G, Boesch F, Prodinger H, et al. The number of spanning trees in the square of cycle[J]. The FibonacciQuart, 1985, 23:258.
  • 6Wang G J F, Yang C S. On the number of spanning trees of circulant graphs [J]. Inter J Comput Math, 1984:, 16..229.
  • 7Boesch G F T, Bogdanowicz Z R. The number of spanning trees in a pris[J]. Inter J Comput Math, 1987, 21.-229.
  • 8BlelleerS K, Saccoman J T. A correction in the formula for the number of spanning trees in threshold graphs[J]. Australasian of Combinatorics, 2007, 37 : 205.
  • 9Bogdanowicz Z R. Formulas for the number of spanning trees in a fan[J]. Applied Mathematical Sciences, 2008 (2) : 781.
  • 10Cai J L. The number of spanning trees in generalized complete Multipartite graphs of fan-type [J].International J Math Combin, 2001(1) :94.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部