期刊文献+

关于牛顿映照的Jordan域

JORDAN DOMAIN IN NEWTONIAN MAPS
下载PDF
导出
摘要 在一定的条件下,根的直接吸性域和非根的周期域由Jordan域构成.进一步,几类牛顿映照的每一个Fatou分支都是Jordan域. Under given conditions, the immediate basin of root and the non root periodic Fatou domai consist of Jordan domain. Furthermore, for certain classes of Newtonian maps, every Fatou component is Jordan domain.
作者 刘刚
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期349-354,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家重点实验室自主研究项目(10B10) 中央高校基本科研业务费资助项目(2010YS02)
关键词 牛顿映照 根的直接吸性域 Jordan域 局部连通 几何有限 Newton map the immediate basin of root Jordan domain locally connected geometrically finite
  • 相关文献

参考文献14

  • 1Przytycki F. Remarks on the simple connectedness of basins of sinks for iterations of rational maps [M]// Krzyzewski K. Dynamical systems and ergodic theory. Warsaw.. Babach Center Publications, 1989 : 229-235.
  • 2Shishikura M. The connectivity of the Julia set of rational maps and fixed points [M]// Schleicher D. Complex dynamics: families and friends. AK Peters: Wellesley/ MA, 2009:257-276.
  • 3Roesch P. On local connectivity for the Julia set of rational maps: newton's famous example[J]. Ann Math, 2008,168:1.
  • 4Roesch P, Yin Y C. Bounded critical Fatou components are Jordan domains, for polynomials[EB/OL]. [2012-01- 30]. ArXiv 0909. 1598v2.
  • 5Petersen C L, Zakeri S. On the Julia set of a typical quadratic polynomial with a Siegel disk[J]. Ann Math, 2004, 159:1.
  • 6Pilgrim K. Rational maps whose Fatou components are Jordan domains[J]. Ergod Th & Dynam Sys, 1996, 16:1323.
  • 7Morosawa S. Julia sets of subhyperbolic rational functions [ J ]. Complex Variables Theory Appl, 2000, 41:151.
  • 8BeardonA F. Iteration of rational functions[M]. Berlin: Springer, 1991.
  • 9Carleson L, Gamelin T W. Complex dynamics [M]. Berlin: Springer, 1991.
  • 10Milnor J. Dynamics in one complex variable[M]. 3rded. Princeton and Oxford: Princeton University Press, 2006.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部