期刊文献+

仿射运动模型下的图像盲超分辨率重建算法 被引量:3

Blind Super-Resolution Reconstruction Algorithm under Affine Motion Model
原文传递
导出
摘要 研究利用帧间存在仿射运动的低分辨率图像序列重建出更高光学分辨率图像的盲超分辨率(BSR)问题.首先给出一种基于特征向量的模糊核零空间矩阵构造方法.将模糊的零子空间约束作为一项规整化泛函,提出一种非参数化模糊辨识、运动估计和图像重建三重耦合问题的联合迭代算法.该算法采用一个二层优化策略:先将三重耦合的BSR问题分解为关于模糊的二次型和关于运动参数与图像的非线性最小二乘(NLS)问题,再采用Gauss-Newton方法求解该NLS问题.仿真实验结果表明,文中提出的仿射变换下的BSR算法能对图像空间移变退化过程进行更为精确的建模,比纯平移BSR算法有更强的局部纹理恢复能力.最后通过真实车牌图像序列展示该算法的适用性. An approach to the blind super-resolution (BSR) problem is proposed which yields a higher optical resolution image from a low-resolution (LR) image sequence with affine inter-frame motion. Firstly, an eigenvector-based method for constructing the null space of blurs is presented. It is used as the regularization constraint of the optimization procedure. Then, the iterative algorithm is developed for the triple-coupled problem. The proposed algorithm adopts a two-layer optimization strategy: in the first layer, the triple-coupled BSR problem is reduced to a quadratic form with respect to the blurs, and an nonlinear least squares (NLS) problem of the motion and the high-resolution (HR) image; in the second layer, the NLS problem is solved using a Gauss-Newton based method. The experimental results on synthetic data illustrate that the proposed BSR algorithm for affine transform, has better performance in terms of modeling the space-variant degradation process as well as restoring the local textures compared with the BSR algorithm for pure translation. Finally, the applicability of the proposed algorithm is demonstrated using real license plate images.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第4期648-655,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.61032007) 北京市自然科学基金(No.4102060)资助项目
关键词 仿射变换 盲超分辨率(BSR) 运动估计 模糊辨识 规整化 Affine Transform, Blind Super-Resolution (BSR), Motion Estimation, Blur htentification,Regularization
  • 相关文献

参考文献16

  • 1Irani M, Peleg S. Motion Analysis for Image Enhancement : Resolu- tion, Occlusion, and Transparency. Journal of Visual Communica- tion and Image Representation, 1993, 4(4) : 324-335.
  • 2Hardie R C, Barnard K J, Armstrong E E. Joint Map Registration and High-Resolution Image Estimation Using a Sequence of Under- sampled images. IEEE Trans on Image Processing, 1997, 6(12) : 1621-1633.
  • 3Woods N A, Galatsanos N P, Katsaggelos A K. Stochastic Methods for Joint Registration, Restoration, and Interpolation of Multiple Undersampled Images. IEEE Trans on Image Processing, 2006, 15 ( 1 ) : 201-213.
  • 4Yap K H, He Y, Tian Y, et al. A Nonlinear L1-Norm Approach for Joint Image Registration and Super-Resolution. IEEE Signal Pro- cessing Letters, 2009, 16( 11 ) : 981-984.
  • 5Ngnyen N, Milarffar P, Golub G. Efficient Generalized Cross-Vali- dation with Applications to Parametric Image Restoration and Reso- lution Enhancement. IEEE Trans on Image Processing, 2001, 10 (9) : 1299-1308.
  • 6Yang Hao, Gao Jianpo, Wu Zhenyang. Blur Identification and Image Super-Resolution Reconstruction Using an Approach Similar to Variable Projection. IEEE Signal Processing Letters, 2008, 15 (3) : 289-292.
  • 7He Yu, Yap K H, Chen Li, et al. Blind Super-Resolution Image Reconstruction Using a Maximum a Posteriori Estimation// Proc of the IEEE Conference on Image Processing. Atlanta, USA, 2006: 1729 - 1732.
  • 8Xiong Zhiwei, Sun Xiaoyan, Wu Feng. Robust web Image Video Super-Resolution. IEEE Trans on hnage Processing, 2010, 19 (8) : 2017 -2028.
  • 9Yang Jianchao, Wright J, Huang T S, et al. Image Super-Resolu- tion via Sparse Representation. IEEE Trans on Image Processing, 2010, 19(11) : 2861-2873.
  • 10Gajjar P P, Joshi M V. New Learning Based Super-Resolution: Use of DWT and IGMRF Prior. IEEE Trans on Image Processing, 2010, 19(5): 1201-1213.

二级参考文献24

  • 1Nguyen N, Milanfar P, Golub G. A computationally efficient superresolution image reconstruction algorithm [J]. IEEE Transactions on Image Processing, 2001, 10(4) : 573-583.
  • 2Nguyen N, Milanfar cross validation with Efficient generalized applications to parametric image restoration and resolution enhancement [J]. IEEE Transactions on Image Processing, 2001, 10(9): 1299-1308.
  • 3Yang H, Gao J P, Wu Z Y. Blur identification and image super resolution reconstruction using an approach similar to variable projection [J]. IEEE Signal Processing Letters, 2008, 15:289-292.
  • 4Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
  • 5Farsiu S, Robinson M D, Elad M, et al. Fast and robust multiframe super resolution [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
  • 6Farsiu S, Elad M, Milanfar P. Multiframe demosaicing and super-resolution of color images [J]. IEEE Transactions on Image Processing, 2006, 15(1): 141-159.
  • 7Woods N A, Galatsanos N P, Katsaggelos A K, Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images[J]. IEEE Transactions on Image Processing, 2006, 15(1): 201-213.
  • 8He Y, Yap K H, Chen L, et al. A nonlinear least square technique for simultaneous image registration and superresolution [J]. IEEE Transactions on Image Processing, 2007, 16(11): 2830-2841.
  • 9Chantas G K, Galatsanos N P based on fast registration Woods N A. Super-resolution and maximum a posteriori reconstruction [J]. IEEE Transactions on Image Processing, 2007, 16(7): 1821-1830.
  • 10Elad M, Datsenko D. Example-based regularization deployed to super-resolution reconstruction of a single image [J]. The Computer Journal, 2007, 50(4): 1-16.

共引文献3

同被引文献40

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部