期刊文献+

一种人脸标准光照图像的线性重构方法 被引量:5

A Linear Reconstruction Method for Face Images under Normal Illumination
原文传递
导出
摘要 基于相同光照下不同人脸图像与其标准光照图像之间的稳定关系,文中提出一种人脸标准光照图像重构方法.首先,为消除人脸结构影响,引入人脸三维变形,实现图像像素级对齐.其次,根据图像明暗变化,给出一种基于图像分块的光照分类方法.最后,对于形状对齐后的不同光照类别样本,训练出基于子空间的线性重构模型.该方法有效避免传统预处理方法带来的重构图像纹理丢失和子空间方法引起的图像失真.Extended Yale B数据库上实验表明,该方法对图像真实度与人脸识别率的提升,也验证文中人脸对齐和光照分类方法的有效性. Based on the stable relationships between the face representations under the certain and the normal illumination for different individuals, an approach to reconstruct face images under normal illumination is proposed. Firstly, to eliminate the impact of facial surfaces, an image deformation method in 3D domain is applied to achieve pixel-level alignment. Then, an illumination classification method based on image blocking is proposed to classify the images with the same lighting gradation. Finally, various linear reconstruction models of different illumination categories based on facial subspaces are trained from the preprocessing image pairs for face image reconstruction. The method effectively avoids the loss of the facial texture in image preprocessing and the distortion in image subspace. The experimental results of the proposed method on Extended Yale B demonstrate the performance in image representation and face recognition and verify the effectiveness in face alignment and illumination classification.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第4期656-663,共8页 Pattern Recognition and Artificial Intelligence
关键词 标准光照重构 三维人脸模型 光照分类 人脸识别 Face Reconstruction, 3D Face Model, Illumination Classification, Face Recognition
  • 相关文献

参考文献22

  • 1Barrow H G, Tenenbaum J M. Recovering Intrinsic Scene Charac- teristics from Images. Computer Vision System, 1978, 1 (3) : 3-26.
  • 2Hallinan P W. A Low-Dimensional Representation of Human Faces tor Arbitrary Lighting Conditions // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, USA, 1994:995-999.
  • 3Chen W, Er M J, Wu S. Illumination Compensation and Normaliza- tion tor Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain. IEEE Trans on Systems, Man and Cybernetics, 2006, 36(2) : 458-466.
  • 4Han Hu, Shan Shiguang, Chen Xilin, et al. Illumination Transfer Using Homomorphic Wavelet Filtering and Its Application to Lighting-Insensitive Face Recognition// Proc of the 1EEE Interna- tional Conference on Automatic Face and Gesture Recognition. An'lsterdam, Netherlands, 2008:17-19.
  • 5Chert T, Yin W T, Zhou X S, et al. Total Variation Models for Var- iable Lighting Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 9 ) : 1519-1524.
  • 6Wang Haitao, Li S Z, Wang Yangsheng. Face Recognition under Varying Lighting Conditions Using Self Quotient Image // Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004:819-824.
  • 7Gross R, Brajovie V. An Image Preprocessing Algorithm for Illumi- nation Invariant Face Recognition // Proc of the 4th International Conference on Audio-and Video-Based Biometric Person Authentica- tion. Guildford, UK, 2003:10-18.
  • 8Xie Xiaohua, Zheng Weishi, Lai Jianhuang, et al. Face Illumina- tion Normalization on Large and Small Scale Features//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2008:8-16.
  • 9Shashua A, Tammy R. The Quotient Image: Class-Based Re-Ren- dering and Recognition with Varying Illuminations. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23 ( 2 ) : 129-139.
  • 10Lee S W, Moon S H, Lee S W. Face Recognition under Arbitrary Illumination Using Illuminated Exemplars. Pattern Recognition, 2007, 40(5) : 1605-1620.

同被引文献56

  • 1何晓光,田捷,毋立芳,张瑶瑶,杨鑫.基于形态学商图像的光照归一化算法(英文)[J].软件学报,2007,18(9):2318-2325. 被引量:5
  • 2SHIM Hyunjung,LUO Jiebo,CHEN Tsuhan.A sub-space model-based approach to face relighting underunknown lighting and poses[J].IEEE Transactionson Image Processing,2008,17(8):1331-1341.
  • 3SHASHUA A,TAMMY R R.The quotient image:class-based re-rendering and recognition with varyingilluminations[J].IEEE Transactions on PAMI,2001,23(2):129-139.
  • 4CHEN Terrence,YIN Wotao,ZHOU Xiang Sean,etal.Total variation models for variable lighting facerecognition[J].IEEE Transactions on PAMI,2006,28(9):1519-1524.
  • 5WANG Haitao,LI Stan Ziqing,WANG Yangsheng,et al.Self quotient image for face recognition[C]∥Proceedings of the International Conference on ImageProcessing.Piscataway,NJ,USA:IEEE,2004:1397-1400.
  • 6WANG Haitao,LI Stan Ziqing,WANG Yangsheng.Generalized quotient image[C]∥Proceedings of theIEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition.Piscataway,NJ,USA:IEEE,2004:498-505.
  • 7AN Gaoyun,WU Jiying,RUAN Qiuqi.An illumina-tion normalization model for face recognition undervaried lighting conditions[J].Pattern RecognitionLetters,2010,31(9):1056-1067.
  • 8LIU Jianyi,ZHENG Nanning,XIONG Lei,et al.Il-lumination transition image:parameter-based illumina-tion estimation and re-rendering[C]∥Proceedings ofthe International Conference on Pattern Recognition.Piscataway,NJ,USA:IEEE,2008:1-4.
  • 9PIZER S M,AMBURN E P,AUSTIN J D,et al.Adaptive histogram equalization and its variations[J].Computer Vision Graphics and Image Processing,1987,39(3):355-368.
  • 10BEIER T,NEELY S.Feature-based image metamor-phosis[J].Computer Graphics,1992,26(2):35-42.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部