期刊文献+

基于压缩传感的邻域嵌入

Compressive Sensing Based Neighborhood Embedding
原文传递
导出
摘要 基于谱流形学习算法的一个核心问题是局部邻域的构建,可通过KNN或ε准则构建局部邻域.受压缩传感理论的启发,提出一种基于l2和l1范数重构准则的邻域构建模式,称之为基于压缩传感的邻域嵌入(CSNE).在此基础上,利用无标签数据,提出半监督的CSNE.在多个数据集上的可视化和半监督分类实验,证明该算法的有效性. How to construct local neighborhoods is one of the key points of spectral-manifold based algorithms. For example, locally linear embedding (LLE), one of the traditional manifold learning algorithms, constructs the local relationships through KNN or s criterion. Motivated by compressive sensing theory, the strategy of neighborhood construction is proposed based on the linear combination of/2 and 11 , which is called compressive sensing based neighborhood embedding (CSNE). The proposed strategy can not only be applied to LLE, but also to other spectral learning methods while neighborhoods need to be constructed. In addition, the semi-supervised CSNE algorithm is presented while the un-labeled data are taken into account. The results of visualization and classification experiments on several datasets demonstrates the competitive results of the proposed algorithm compared with PCA, LDA, LPP and S-Isomap.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第4期684-690,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60805001 61170109) 国家863计划项目(No.2007AA01Z164) 浙江省自然科学基金项目(No.Y1100161 Y1090579) 浙江省科技厅项目(No.2012C21021)资助
关键词 流形学习 压缩传感(CS) 半监督学习 Manifold Learning, Compressive Sensing (CS) , Semi-Supervised Learning
  • 相关文献

参考文献28

  • 1Wright J, Ganesh A, Yang A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 1-21.
  • 2TurkM, Pentland A. Eigenfaces for Recognition. Journal of Cogni- tive Neuroscience, 1991, 3( 1 ) : 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection.IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 4He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 ( 3 ) : 328-340.
  • 5Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 ( 5500 ) : 2323 - 2326.
  • 6Tenenbaum J B, Silva V D, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500) : 2319-2323.
  • 7Zhang Xhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 2005, 26( 1 ) : 313-338.
  • 8Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6) : 1373-1396.
  • 9Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extension: A General Framework for Dimensionality Reduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29 (1): 40-51.
  • 10Cheng Bin, Yang Jianchao, Yan Shuicheng, et al. Learning with l1 -Graph for image Analysis. IEEE Trans on Image Processing, 2010, 19(4): 858-866.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部