期刊文献+

复杂约束条件下的UCAV多重任务分配 被引量:1

Multiple Task Assignment of Unmanned Combat Aerial Vehicles Under Complex Constraints
原文传递
导出
摘要 与单任务分配问题相比,无人作战飞机(UCAV)多重任务分配具有更复杂的约束条件.基于UCAV任务分配有向图给出了多重任务分配的一般框架,分析了任务分配的约束条件,提出了一种求解约束优化问题的改进遗传算法.其基本思想是对种群中的个体按两种方案评价,对可行解按目标函数值大小,对不可行解按约束违反程度进行评价,避免了罚函数法中的罚因子的选取难题.采用矩阵形式进行个体编码,按目标出现顺序映射任务类型,解决了多重任务的编码表示,并对武器类型向量实施绑定策略,简化了问题复杂性.设计了选择,交叉,变异等遗传操作算子,保证生成的新染色体不破坏编码时满足的约束条件.最后进行了仿真试验,结果表明提出的方法求解UCAV多重任务分配问题的可行性和有效性. Multiple task assignment about Unmanned Combat Aerial Vehicles(UCAV) has more complex constraints compared to the si^tgle one. This paper presents a framework of UCAV task assignment based on the task assignment direction graph, and discusses some constraints with task assignment. The basic concept is to evaluate the feasible and infeasible solutions respectively. It evaluates the feasible solutions according to the value of the objective function and the infeasible ones according to the degree of the violation of the constraints. The individual coding is showed by the matrix and the multiple task is solved under the help of target orders. In order to reduce the problem complexity, the weapon types are bind to the targets. Then this paper designs special selection, crossover, inverse and mutation operations, ensures the new chromosomes meet the same constraints as the coding. At last, experiments are made and simulation results show the feasibility and effectiveness of this approach to resolve complex task assignment.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第17期161-169,共9页 Mathematics in Practice and Theory
关键词 无人作战飞机 多重任务分配 复杂约束 Unmanned Combat Aerial Vehicles multiple task assignment complex constraints
  • 相关文献

参考文献8

  • 1Rabbath C A, Gagnon E and Lauzon M. On the cooperative control of multiple unmanned aerial vehicles[J]. IEEE Canadian Review, 2004:15-18.
  • 2Beard R W, McLain T W, Goodrich W A, etal. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Auto-mation, 2002, 18(6): 911-922.
  • 3Serdar Erkan, Mahmut Kandemir and Gary Giger. Advanced Task assignment for unmanned combat aerial vehicles targeting cost efficiency and survivability[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2008:7-10.
  • 4Schumacher C, Chandler P, Pachter M and Pacht-er, L. Constrained optimization for UAV task assignment[R]. AIAA-2004-5352.
  • 5Rasmussen S J, Mitchell J W, Schumacher C. Opti-mal vs. Heuristic assignment of cooperative autonomous unmanned air vehicles[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2003.
  • 6Rasmussen S J, Shima T, Mitchell JW, Sparks A,Chandler PR.State-space search for improved autonomous UAVs assignment algorithm[C]//Proceedings of the IEEE conference on decision and control, 2004.
  • 7叶媛媛,闵春平,沈林成,朱华勇.基于混合遗传算法的多UCAV协同任务分配方法[J].东南大学学报(自然科学版),2005,35(A02):53-58. 被引量:4
  • 8Shima T, Rasmussen S J and Spark A G. UAV Cooperative control multiple task assignments using genetic algorithms[C]//American Control Conference, 2005.

二级参考文献9

  • 1周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999..
  • 2Barabto G. Uninhabited combat air vehicle controls and displays for suppression of enemy air defenses [J]. CSER IAC Gateway,2000, 11(1):1-4.
  • 3Wellman M, Wurman P. Market-aware agents for a multiagent world[J]. Robotics and Autonomous Systems, 1998, 24:115 - 125.
  • 4Schumacher C, Chandler P R, Rasmussen S J.Task allocation for wide area search munitions via iterative network flow [A]. In:MAA Cadd~nce, Navigation, and Control Conference and Exhibit[C]. Canada: AIAA Press, 2002.1- 8.
  • 5Nieminen K, Ruuth S. Genetic algorithm for finding a good first integer solution for MILP[R]. London: Helsinki University of Technology, 2003.
  • 6Sakawa M, Shibano T, Kato K. An interactive fuzzy satisficing method for multiobjective integer programming problems through genetic algorithms[A]. In: Jain L C, Jain, R K, eds. Proceedings of 1998 Second International Conference on Knowledge-based Intelligent Systems [C]. Adelaide: IEEE Press, 1998.94 - 100.
  • 7吴祈宗.运筹学与最优化方法[M].北京:机械工业出版社,2005.180-270.
  • 8曹奇英,何张兵.WTA问题的遗传算法研究[J].控制理论与应用,2001,18(1):76-79. 被引量:38
  • 9丰建荣,刘志河,刘正和.混合整数规划问题遗传算法的研究及仿真实现[J].系统仿真学报,2004,16(4):845-848. 被引量:32

共引文献3

同被引文献6

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部