期刊文献+

限制Witt超代数偶部的可约极大阶化子代数 被引量:3

Reducible Maximal Graded Subalgebras for the Even Part of Restricted Witt Superalgebra
原文传递
导出
摘要 为了深入研究限制Witt超代数的偶部g在素特征域上的极大阶化子代数,利用g的结构特点构造出g的所有可约极大阶化子代数并给出相应的维数公式. In order to insight into the maximal graded subalgebras of the even part of restricted Witt superalgebra g over a field of prime characteristic, this paper constructs all the reducible maximal graded subalgebras of g and determines the corresponding dimension formula by virtue of the features of structure of g.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第17期222-227,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10871057) 黑龙江省杰出青年科学基金(JC201004) 黑龙江省教育厅科研项目(12521158)
关键词 模李超代数 限制Witt超代数 可约极大阶化子代数 Modular Lie superalgebra restricted Witt superalgebra reducible maximalgraded subalgebra
  • 相关文献

参考文献9

  • 1Maltsev A I. On semi-simple subgroups of Lie groups[J]. Bull Acad Sci URSS Ser Math; Izv Akad Nauk SSSR, 1944, 8:143-174 (in Russian).
  • 2Dynkin E B. Semisimple subalgebras of semisimple Lie algebra[J]. Mat Sb (N.S.), 1952, 30(72): 349-462; transl.:Amer Math Soc Transl, 1957, 6(2): 111-244.
  • 3Seitz G M. The maximal subgroups of classical algebraic groupsM. Mem Amer Math Soc, 1987, 67: 365.
  • 4Seitz G M. Maximal subgroups of exceptional algebraic groups[M]. Mere Amer Math Soc, 1991, 90: 441.
  • 5Melikyan H. On a maximal subalgebras of the simple Lie algebras of'Caftan type[M].In: XVI All-Union Algebraic Conf, Leningrad, 1981, 107 (in Russian).
  • 6Melikyan H. Maximal subalgebras of simple modhlar Lie algebras[J]. J Algebra, 2005, 284(3): 824- 856.
  • 7Kostrikin A I, Shafarevich I R. Graded Lie algebras of finite characteristic[JJ. Izv Akad Nauk SSSR Ser Mat, 1969, 33: 251-322(in Russian); transl.:Math USSR Izv, 1969, 3:237-304.
  • 8Liu W D, Zhang Y Z. Derivations of the even parts for modular Lie superalgbras of Caxtan type W and S[J]. Internat J Algebra Computation, 2007, 17(14): 661-714.
  • 9Liu W D, Zhang Y Z. Automorphism groups of restricted Caftan-type Lie superalgbras[J]. Commun Algebra, 2006, 34(1): 1-18.

同被引文献19

  • 1Karpelevich F I. On nonsemisimple maximal subalgebras of simple Lie algebras[J]. Dokl Akad Nauk SSSR (N. S.), 1951, 76:775-778 (in Russian).
  • 2Shchepochkina I. Maximal subalgebras of matrix Lie superalgebras[A]. Leites D. Seminar on Super- manifolds[C]. Reports of Stockholm University, 1992, 32: 1-43.
  • 3Shchepochkina I. Maximal solvable subalgebras of Lie superalgebras R [(m|n) and s [(rn|n)[J]. Funk- tsional Anal. Prilozhen, 1992, 28(2): 92-94.
  • 4Melikyan H. Maximal subalgebras of simple modular Lie algebras[J]. J. Algebra, 2005, 284(3): 824- 856.
  • 5Kostrikin A I, Shafarevich I R. Graded Lie algebras of finite characteristic[J]. Izv. Akad. Nauk. SSSR Ser. Mat., 1969, 33: 251-322.
  • 6Liu W D, Zhang Y Z. Derivations of the even parts for modular Lie superalgbras of Cartan type W and S[J]. Internat J. Algebra Computation, 2007, 17(14): 661-714.
  • 7Dykin E. Maximal subgroups of classical groups [J]. Trudy Moskov. Mat. Obsc., 1952,30:39-166.
  • 8Dykin E. Semisimple subalgebras of semisimple Lie algebras [J]. Mat. Sb. (N.S.), 1952, 30(72):349-462.
  • 9Shchepochkina I. Maximal subalgebras of matrix Lie superalgebras [J]. In: Leites D. Seminar on Superman- ifolds. Reports of Stockholm University, 1992,32:1-43.
  • 10Elduquq A, Laliena J, Sacristan S. Maximal subalgebras of associative superalgebras [J]. J. Algebra., 2004,275(1) :40-58.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部