期刊文献+

一种红外十字分划线的中心定位方法

A method for center location of infrared crosshair
下载PDF
导出
摘要 红外十字分划线的提取和中心定位是红外观瞄装备实现光轴检测数字化的重要组成部分。针对红外图像对比度差、信噪比低、边缘模糊的特点,提出了基于灰度形态学的十字分划线提取方法,应用一个形态学顶帽算子并对得到的结果使用大津(Otsu)方法进行阈值处理。根据十字分划线的形态特点设计了十字结构元素对提取出的十字分划线进行腐蚀,对红外十字分划线实现了定位。实验结果表明,提出的算法能在图像对比度较低,边缘模糊的情况下有效地提取出十字分划线,并准确定位到十字分划线的中心。 The obtaining and center location of infrared crosshair is an important part of digital detection for infrared instrument optical axis.In order to address the poor contrast of the infrared image,low signal to noise ratio and edge blur of infrared images,a method base on grayscale morphology of obtained cross is proposed.This method uses a morphology top-hat operator and the method of Otsu thresholding on the obtained results.According to the crosshair morphology characteristics,a cross-shaped structure element is designed.The obtained crosshair is eroded by the cross-shaped structure element to center location the crosshair.The experimental results demonstrate that the proposed algorithm can effectively extract crosshair and accurately locate the crosshair center in the case of low image contrast and fuzzy edge.
出处 《光学仪器》 2012年第4期44-48,共5页 Optical Instruments
关键词 红外图像 灰度形态学 对比度增强 十字分划线 大津方法 infrared image grayscale morphology contrast enhancement cross otsu
  • 相关文献

参考文献8

二级参考文献32

  • 1冈萨雷斯.数字图像处理(MATLAB版)[M].阮秋琦,译.北京:电子工业出版社,2008,144-160.
  • 2Jackway P T. Improved morphological Top-hat [J]. Electronics Letters, 2000, 36(14) : 1194-1195.
  • 3Soni T, Zeidler J R, Ku W H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data [J]. IEEE Transaction on Image Processing, 1993, 2 (3): 327-340.
  • 4Deshpande S D, Er M H, Ronda V, et al. Maxmean and max-median filters for detection of smalltargets[C]//Proceedings of SPIE. Bellingham,WA, USA:SPIE, 1999, 3809: 74-83.
  • 5Serra J. Image analysis and mathematical morphology [M]. New York: Academic Press, 1982.
  • 6Andrei C J, Michael W, Jos R. Morphological hattransformation scale spaces and their use in pattern classification [J]. Pattern Recognition, 2004, 37: 901-915.
  • 7De I, Chanda B, Chattopadhyay B. Enhancing effective depth-of-field by image fusion using mathematical morphology [J]. Image and Vision Computing, 2006, 24: 1278-1287.
  • 8Burgeth B, Bruhn A, Papenberg N, et al, Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions [J]. Signal Processing, 2007, 87: 277-290.
  • 9Angulo J, Serra J. Modelling and segmentation of colour images in polar representations [J]. Image and Vision Computing, 2007, 25: 475-495.
  • 10Burgeth B, Bruhn A, Didas D, et al. Morphology for matrix data: ordering versus PDE-based approach [J]. Image and Vision Computing, 2007, 25: 496-511.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部