期刊文献+

Unified treatment of one-range addition theorems for integer and non-integer n-STO, -GTO and -generalized exponential type orbitals with hyperbolic cosine in position, momentum and four-dimensional spaces

Unified treatment of one-range addition theorems for integer and non-integer n-STO, -GTO and -generalized exponential type orbitals with hyperbolic cosine in position, momentum and four-dimensional spaces
下载PDF
导出
摘要 Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems. Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期176-178,共3页 中国物理B(英文版)
关键词 electronic structure generalized exponential type orbitals one-range addition theorems Hartree-Fock-Roothaan equations electronic structure, generalized exponential type orbitals, one-range addition theorems,Hartree-Fock-Roothaan equations
  • 相关文献

参考文献21

  • 1Hylleraas E A 1928 Z. Phys. 48 469.
  • 2Hylleraas E A 1930 Z. Physik. 65 209.
  • 3James H M and Coolidge A S 1933 J. Chem. Phys. 1 825.
  • 4Kolos W and Roothaan C C J 1960 Rev. Mod. Phys. 32 205.
  • 5Kolos W and Wolniewicz L 1964 J. Chem. Phys. 41 3663.
  • 6King F W 1991 Phys. Rev. A 44 7108.
  • 7King F W, Dykema K J and Lund A 1992 Phys. Rev. A 46 5406.
  • 8King K J 1993 J. Chem. Phys. 99 3622.
  • 9Porras I and King F W 1994 Phys. Rev. A 49 1637.
  • 10Kleindienst H and Luchow A 1995 Phys. Rev. A 51 5019.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部