期刊文献+

Scaling properties of phase-change line memory

Scaling properties of phase-change line memory
下载PDF
导出
摘要 Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask. The electrical performance of these memory devices was characterized. The current^oltage (I-V) and resistance-voltage (RV) characteristics demonstrate that the power consumption decreases with the width of the phase-change line. A three-dimensional simulation is carried out to further study the scaling properties of the phase- change line memory. The results show that the resistive amorphous (RESET) power consumption is proportional to the cross-sectional area of the phase-change line, but increases as the line length decreases. Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask. The electrical performance of these memory devices was characterized. The current^oltage (I-V) and resistance-voltage (RV) characteristics demonstrate that the power consumption decreases with the width of the phase-change line. A three-dimensional simulation is carried out to further study the scaling properties of the phase- change line memory. The results show that the resistive amorphous (RESET) power consumption is proportional to the cross-sectional area of the phase-change line, but increases as the line length decreases.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期554-558,共5页 中国物理B(英文版)
基金 Project supported by the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003) the National Key Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00602, and 2011CB932800) the National Natural Science Foundation of China (Grant Nos. 60906003, 60906004, 61006087, and 61076121) the Science and Technology Council of Shanghai of China (Grant No. 1052nm07000)
关键词 phase-change memory line structure scaling properties three-dimensional simulation phase-change memory, line structure, scaling properties, three-dimensional simulation
  • 相关文献

参考文献20

  • 1Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450.
  • 2Lacaita A L and Wouters D J 2008 Phys. S$at. Sol. A 205 2281.
  • 3Bez R 2009 IEDM Tech. Dig. p. 1.
  • 4Lee J I, Park H, Cho S L, Park Y L, Bae B J, Park J H, Park J S, An H G, Bae J S, Ahn D H, Kim Y T, Horii H, Song S A, Shin J C, Park S O, Kim H S, Chung U I, Moon J T and Ryu B I 2007 Tech. Dig. Symp. VLSI Technol. p. 102.
  • 5Wuttig M and Yamada N 2007 Nat. Mater. 6 824.
  • 6Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F and Bez R 2004 IEEE Trans. Electron Dev. 51 452.
  • 7Zhang T, Song Z T, Liu B, Liu W L, Feng S L and Chen B 2007 Chin. Phys. 16 2475.
  • 8Liu B, Song Z T, Zhang T, Feng S L and Gan F X 2004 Chin. Phys. 13 1167.
  • 9Liu B, Song Z T, Zhang T, Feng S L and Chen B 2004 Chin. Phys. 13 1947.
  • 10Attenborough K, Hurkx G A M, Delhougne R, Perez J, Wang M T, Ong T C, Tran L, Roy D, Gravesteijn D J and van Duuren M J 2010 IEDM Tech. Dig. p 29.2.1.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部