期刊文献+

基于贝叶斯概率的印度洋大眼金枪鱼渔场预报 被引量:6

Fishing ground forecasting of bigeye tuna in the Indian ocean based on bayesian probability model
下载PDF
导出
摘要 本文采用贝叶斯概率为模型基础框架,利用来自印度洋金枪鱼管理委员会(IOTC)的大眼金枪鱼延绳钓历史渔获统计数据和美国国家海洋大气管理局(NOAA)的海温最优插值再分析数据,进行适用于印度洋金枪鱼延绳钓渔场的模型参数估算与预报模型构建。模型回报精度验证结果表明,印度洋大眼金枪鱼延绳钓渔场综合预报的准确率达到了65.96%。模型预报结果用概率百分比来表示,符合渔业资源分布的客观特点。利用中分辨率成像光谱仪MODIS提供的SST产品进行业务化运行的渔场预报,利用模型结果每周生成印度洋大眼金枪鱼延绳钓渔场概率预报图,用不同大小的圆形来表示渔场概率的高低,可以为印度洋区域的远洋渔业生产提供信息支持。 Based on the framework of Bayesian Probability model, historic statistic data of bigeye tuna longline catch in the Indian Ocean from IOTC and optimum interpolation sea surface temperature data from satellite remote sensing from NOAA were used to estimate the model prediction parameters for the Indian Ocean tuna longline fisheries. The validation results of the model showed that the forecasting accuracy of the model for the Indian Ocean bigeye tuna longline fisheries reached 65.96%. The Moderate Resolution Imaging Spectroradiometer (MODIS) SST products were used to do cyclical fishery forecasting in one week cycle and to provide information to support the production of offshore fishing in the Indian Ocean region.
出处 《渔业信息与战略》 2012年第3期214-218,共5页 Fishery Information & Strategy
基金 863计划(2007AA092202) 中国水产科学研究院基本科研业务费资助(2012A1201) 资源与环境信息系统国家重点实验室开放基金2010KF0005SA
关键词 贝叶斯 渔场预报 大眼金枪鱼 印度洋 Bayesian Probability model fishing ground forecasting bigeye tuna the Indian Ocean
  • 相关文献

参考文献9

  • 1粮农组织渔业与水产养殖部.2010世界渔业和水产养殖状况[M]罗马:联合国粮食与农业组织,201031-3653-57.
  • 2Stevenson W R,Pastula E J. Observations on remote sensing in fisheries[J].Marine Fisheries Review,1971,(09):9-21.
  • 3Lasker R,Pelaez J,Laurs R. M,The use of satellite infrared imagery for describing ocean processes in relation to spawning of northern Anchovy[J].Remote Sensing of Environment,1981.439-453.
  • 4Laurs,R.M,Fielder,P.C,Montgomery,D.R. Albacore tuna catch distribution relative to environmental features observed from satellite[J].Deep-Sea Research,1984.1085-1099.
  • 5Fiedler,P.C,Smith,G.B,Laurs,R.M. Fisheries applications of satellite data in the eastern North Pacific[J].Marine Fishery Review,1984.1-13.
  • 6Nieto K,Y neg E,Silva C. Probable fishing grounds for anchovy in the northern Chile using an expert system[A].Sidney,IEEE,.
  • 7崔雪森,陈雪冬,樊伟.金枪鱼渔场分析预报模型及系统的开发[J].高技术通讯,2007,17(1):100-103. 被引量:6
  • 8樊伟,陈雪忠,沈新强.基于贝叶斯原理的大洋金枪鱼渔场速预报模型研究[J].中国水产科学,2006,13(3):426-431. 被引量:15
  • 9慕春棣,tsinghua.edu.cn,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5):660-666. 被引量:100

二级参考文献27

  • 1孙效功,胥可辉,褚忠信,黄海挺.海岸带钻孔数据的可视化[J].中国海洋大学学报(自然科学版),2004,34(5):881-885. 被引量:4
  • 21.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 32.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 43.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 54.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 65.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 76.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 87.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 98.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 109.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152

共引文献115

同被引文献134

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部